Goto

Collaborating Authors

 Yiming Yang




XLNet: Generalized Autoregressive Pretraining for Language Understanding

Neural Information Processing Systems

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation.


Re-examination of the Role of Latent Variables in Sequence Modeling

Neural Information Processing Systems

With latent variables, stochastic recurrent models have achieved state-of-the-art performance in modeling sound-wave sequence. However, opposite results are also observed in other domains, where standard recurrent networks often outperform stochastic models. To better understand this discrepancy, we re-examine the roles of latent variables in stochastic recurrent models for speech density estimation. Our analysis reveals that under the restriction of fully factorized output distribution in previous evaluations, the stochastic variants were implicitly leveraging intrastep correlation but the deterministic recurrent baselines were prohibited to do so, resulting in an unfair comparison. To correct the unfairness, we remove such restriction in our re-examination, where all the models can explicitly leverage intra-step correlation with an auto-regressive structure. Over a diverse set of univariate and multivariate sequential data, including human speech, MIDI music, handwriting trajectory and frame-permuted speech, our results show that stochastic recurrent models fail to deliver the performance advantage claimed in previous work. In contrast, standard recurrent models equipped with an auto-regressive output distribution consistently perform better, dramatically advancing the state-ofthe-art results on three speech datasets.


Adaptive Smoothed Online Multi-Task Learning

Neural Information Processing Systems

This paper addresses the challenge of jointly learning both the per-task model parameters and the inter-task relationships in a multi-task online learning setting. The proposed algorithm features probabilistic interpretation, efficient updating rules and flexible modulation on whether learners focus on their specific task or on jointly address all tasks. The paper also proves a sub-linear regret bound as compared to the best linear predictor in hindsight. Experiments over three multitask learning benchmark datasets show advantageous performance of the proposed approach over several state-of-the-art online multi-task learning baselines.


MMD GAN: Towards Deeper Understanding of Moment Matching Network

Neural Information Processing Systems

Generative moment matching network (GMMN) is a deep generative model that differs from Generative Adversarial Network (GAN) by replacing the discriminator in GAN with a two-sample test based on kernel maximum mean discrepancy (MMD). Although some theoretical guarantees of MMD have been studied, the empirical performance of GMMN is still not as competitive as that of GAN on challenging and large benchmark datasets. The computational efficiency of GMMN is also less desirable in comparison with GAN, partially due to its requirement for a rather large batch size during the training. In this paper, we propose to improve both the model expressiveness of GMMN and its computational efficiency by introducing adversarial kernel learning techniques, as the replacement of a fixed Gaussian kernel in the original GMMN. The new approach combines the key ideas in both GMMN and GAN, hence we name it MMD GAN.


MMD GAN: Towards Deeper Understanding of Moment Matching Network

Neural Information Processing Systems

Generative moment matching network (GMMN) is a deep generative model that differs from Generative Adversarial Network (GAN) by replacing the discriminator in GAN with a two-sample test based on kernel maximum mean discrepancy (MMD). Although some theoretical guarantees of MMD have been studied, the empirical performance of GMMN is still not as competitive as that of GAN on challenging and large benchmark datasets. The computational efficiency of GMMN is also less desirable in comparison with GAN, partially due to its requirement for a rather large batch size during the training. In this paper, we propose to improve both the model expressiveness of GMMN and its computational efficiency by introducing adversarial kernel learning techniques, as the replacement of a fixed Gaussian kernel in the original GMMN. The new approach combines the key ideas in both GMMN and GAN, hence we name it MMD GAN.