Goto

Collaborating Authors

 Yiling Chen


Eliciting Categorical Data for Optimal Aggregation

Neural Information Processing Systems

Models for collecting and aggregating categorical data on crowdsourcing platforms typically fall into two broad categories: those assuming agents honest and consistent but with heterogeneous error rates, and those assuming agents strategic and seek to maximize their expected reward. The former often leads to tractable aggregation of elicited data, while the latter usually focuses on optimal elicitation and does not consider aggregation. In this paper, we develop a Bayesian model, wherein agents have differing quality of information, but also respond to incentives. Our model generalizes both categories and enables the joint exploration of optimal elicitation and aggregation. This model enables our exploration, both analytically and experimentally, of optimal aggregation of categorical data and optimal multiple-choice interface design.


A Bandit Framework for Strategic Regression

Neural Information Processing Systems

We consider a learner's problem of acquiring data dynamically for training a regression model, where the training data are collected from strategic data sources. A fundamental challenge is to incentivize data holders to exert effort to improve the quality of their reported data, despite that the quality is not directly verifiable by the learner. In this work, we study a dynamic data acquisition process where data holders can contribute multiple times.


Eliciting Categorical Data for Optimal Aggregation

Neural Information Processing Systems

Models for collecting and aggregating categorical data on crowdsourcing platforms typically fall into two broad categories: those assuming agents honest and consistent but with heterogeneous error rates, and those assuming agents strategic and seek to maximize their expected reward. The former often leads to tractable aggregation of elicited data, while the latter usually focuses on optimal elicitation and does not consider aggregation. In this paper, we develop a Bayesian model, wherein agents have differing quality of information, but also respond to incentives. Our model generalizes both categories and enables the joint exploration of optimal elicitation and aggregation. This model enables our exploration, both analytically and experimentally, of optimal aggregation of categorical data and optimal multiple-choice interface design.