Goto

Collaborating Authors

 Yildirim, Gökhan


Transform the Set: Memory Attentive Generation of Guided and Unguided Image Collages

arXiv.org Machine Learning

Cutting and pasting image segments feels intuitive: the choice of source templates gives artists flexibility in recombining existing source material. Formally, this process takes an image set as input and outputs a collage of the set elements. Such selection from sets of source templates does not fit easily in classical convolutional neural models requiring inputs of fixed size. Inspired by advances in attention and set-input machine learning, we present a novel architecture that can generate in one forward pass image collages of source templates using set-structured representations. This paper has the following contributions: (i) a novel framework for image generation called Memory Attentive Generation of Image Collages (MAGIC) which gives artists new ways to create digital collages; (ii) from the machine-learning perspective, we show a novel Generative Adversarial Networks (GAN) architecture that uses Set-Transformer layers and set-pooling to blend sets of random image samples - a hybrid non-parametric approach.


Generating High-Resolution Fashion Model Images Wearing Custom Outfits

arXiv.org Machine Learning

Visualizing an outfit is an essential part of shopping for clothes. Due to the combinatorial aspect of combining fashion articles, the available images are limited to a pre-determined set of outfits. In this paper, we broaden these visualizations by generating high-resolution images of fashion models wearing a custom outfit under an input body pose. We show that our approach can not only transfer the style and the pose of one generated outfit to another, but also create realistic images of human bodies and garments.


Disentangling Multiple Conditional Inputs in GANs

arXiv.org Machine Learning

In this paper, we propose a method that disentangles the effects of multiple input conditions in Generative Adversarial Networks (GANs). In particular, we demonstrate our method in controlling color, texture, and shape of a generated garment image for computer-aided fashion design. To disentangle the effect of input attributes, we customize conditional GANs with consistency loss functions. In our experiments, we tune one input at a time and show that we can guide our network to generate novel and realistic images of clothing articles. In addition, we present a fashion design process that estimates the input attributes of an existing garment and modifies them using our generator.