Yi Xu
Non-asymptotic Analysis of Stochastic Methods for Non-Smooth Non-Convex Regularized Problems
Yi Xu, Rong Jin, Tianbao Yang
Stochastic Proximal Gradient (SPG) methods have been widely used for solving optimization problems with a simple (possibly non-smooth) regularizer in machine learning and statistics. However, to the best of our knowledge no nonasymptotic convergence analysis of SPG exists for non-convex optimization with a non-smooth and non-convex regularizer. All existing non-asymptotic analysis of SPG for solving non-smooth non-convex problems require the non-smooth regularizer to be a convex function, and hence are not applicable to a non-smooth non-convex regularized problem. This work initiates the analysis to bridge this gap and opens the door to non-asymptotic convergence analysis of non-smooth non-convex regularized problems. We analyze several variants of mini-batch SPG methods for minimizing a non-convex objective that consists of a smooth non-convex loss and a non-smooth non-convex regularizer. Our contributions are two-fold: (i) we show that they enjoy the same complexities as their counterparts for solving convex regularized non-convex problems in terms of finding an approximate stationary point; (ii) we develop more practical variants using dynamic mini-batch size instead of a fixed mini-batch size without requiring the target accuracy level of solution. The significance of our results is that they improve upon the-state-of-art results for solving non-smooth non-convex regularized problems. We also empirically demonstrate the effectiveness of the considered SPG methods in comparison with other peer stochastic methods.
Non-asymptotic Analysis of Stochastic Methods for Non-Smooth Non-Convex Regularized Problems
Yi Xu, Rong Jin, Tianbao Yang
Stochastic Proximal Gradient (SPG) methods have been widely used for solving optimization problems with a simple (possibly non-smooth) regularizer in machine learning and statistics. However, to the best of our knowledge no nonasymptotic convergence analysis of SPG exists for non-convex optimization with a non-smooth and non-convex regularizer. All existing non-asymptotic analysis of SPG for solving non-smooth non-convex problems require the non-smooth regularizer to be a convex function, and hence are not applicable to a non-smooth non-convex regularized problem. This work initiates the analysis to bridge this gap and opens the door to non-asymptotic convergence analysis of non-smooth non-convex regularized problems. We analyze several variants of mini-batch SPG methods for minimizing a non-convex objective that consists of a smooth non-convex loss and a non-smooth non-convex regularizer. Our contributions are two-fold: (i) we show that they enjoy the same complexities as their counterparts for solving convex regularized non-convex problems in terms of finding an approximate stationary point; (ii) we develop more practical variants using dynamic mini-batch size instead of a fixed mini-batch size without requiring the target accuracy level of solution. The significance of our results is that they improve upon the-state-of-art results for solving non-smooth non-convex regularized problems. We also empirically demonstrate the effectiveness of the considered SPG methods in comparison with other peer stochastic methods.
Homotopy Smoothing for Non-Smooth Problems with Lower Complexity than $O(1/\epsilon)$
Yi Xu, Yan Yan, Qihang Lin, Tianbao Yang
In this paper, we develop a novel homotopy smoothing (HOPS) algorithm for solving a family of non-smooth problems that is composed of a non-smooth term with an explicit max-structure and a smooth term or a simple non-smooth term whose proximal mapping is easy to compute. The best known iteration complexity for solving such non-smooth optimization problems is O(1/ɛ) without any assumption on the strong convexity.
ADMM without a Fixed Penalty Parameter: Faster Convergence with New Adaptive Penalization
Yi Xu, Mingrui Liu, Qihang Lin, Tianbao Yang
Alternating direction method of multipliers (ADMM) has received tremendous interest for solving numerous problems in machine learning, statistics and signal processing. However, it is known that the performance of ADMM and many of its variants is very sensitive to the penalty parameter of a quadratic penalty applied to the equality constraints. Although several approaches have been proposed for dynamically changing this parameter during the course of optimization, they do not yield theoretical improvement in the convergence rate and are not directly applicable to stochastic ADMM. In this paper, we develop a new ADMM and its linearized variant with a new adaptive scheme to update the penalty parameter. Our methods can be applied under both deterministic and stochastic optimization settings for structured non-smooth objective function. The novelty of the proposed scheme lies at that it is adaptive to a local sharpness property of the objective function, which marks the key difference from previous adaptive scheme that adjusts the penalty parameter per-iteration based on certain conditions on iterates.
Adaptive SVRG Methods under Error Bound Conditions with Unknown Growth Parameter
Yi Xu, Qihang Lin, Tianbao Yang
Error bound, an inherent property of an optimization problem, has recently revived in the development of algorithms with improved global convergence without strong convexity. The most studied error bound is the quadratic error bound, which generalizes strong convexity and is satisfied by a large family of machine learning problems. Quadratic error bound have been leveraged to achieve linear convergence in many first-order methods including the stochastic variance reduced gradient (SVRG) method, which is one of the most important stochastic optimization methods in machine learning. However, the studies along this direction face the critical issue that the algorithms must depend on an unknown growth parameter (a generalization of strong convexity modulus) in the error bound. This parameter is difficult to estimate exactly and the algorithms choosing this parameter heuristically do not have theoretical convergence guarantee. To address this issue, we propose novel SVRG methods that automatically search for this unknown parameter on the fly of optimization while still obtain almost the same convergence rate as when this parameter is known. We also analyze the convergence property of SVRG methods under Hölderian error bound, which generalizes the quadratic error bound.
Adaptive SVRG Methods under Error Bound Conditions with Unknown Growth Parameter
Yi Xu, Qihang Lin, Tianbao Yang
Error bound, an inherent property of an optimization problem, has recently revived in the development of algorithms with improved global convergence without strong convexity. The most studied error bound is the quadratic error bound, which generalizes strong convexity and is satisfied by a large family of machine learning problems. Quadratic error bound have been leveraged to achieve linear convergence in many first-order methods including the stochastic variance reduced gradient (SVRG) method, which is one of the most important stochastic optimization methods in machine learning. However, the studies along this direction face the critical issue that the algorithms must depend on an unknown growth parameter (a generalization of strong convexity modulus) in the error bound. This parameter is difficult to estimate exactly and the algorithms choosing this parameter heuristically do not have theoretical convergence guarantee. To address this issue, we propose novel SVRG methods that automatically search for this unknown parameter on the fly of optimization while still obtain almost the same convergence rate as when this parameter is known. We also analyze the convergence property of SVRG methods under Hölderian error bound, which generalizes the quadratic error bound.