Goto

Collaborating Authors

 Yi, Wenqiang


Federated Contrastive Learning for Personalized Semantic Communication

arXiv.org Artificial Intelligence

In this letter, we design a federated contrastive learning (FedCL) framework aimed at supporting personalized semantic communication. Our FedCL enables collaborative training of local semantic encoders across multiple clients and a global semantic decoder owned by the base station. This framework supports heterogeneous semantic encoders since it does not require client-side model aggregation. Furthermore, to tackle the semantic imbalance issue arising from heterogeneous datasets across distributed clients, we employ contrastive learning to train a semantic centroid generator (SCG). This generator obtains representative global semantic centroids that exhibit intra-semantic compactness and inter-semantic separability. Consequently, it provides superior supervision for learning discriminative local semantic features. Additionally, we conduct theoretical analysis to quantify the convergence performance of FedCL. Simulation results verify the superiority of the proposed FedCL framework compared to other distributed learning benchmarks in terms of task performance and robustness under different numbers of clients and channel conditions, especially in low signal-to-noise ratio and highly heterogeneous data scenarios.


DRL Enabled Coverage and Capacity Optimization in STAR-RIS Assisted Networks

arXiv.org Artificial Intelligence

Simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs) is a promising passive device that contributes to a full-space coverage via transmitting and reflecting the incident signal simultaneously. As a new paradigm in wireless communications, how to analyze the coverage and capacity performance of STAR-RISs becomes essential but challenging. To solve the coverage and capacity optimization (CCO) problem in STAR-RIS assisted networks, a multi-objective proximal policy optimization (MO-PPO) algorithm is proposed to handle long-term benefits than conventional optimization algorithms. To strike a balance between each objective, the MO-PPO algorithm provides a set of optimal solutions to form a Pareto front (PF), where any solution on the PF is regarded as an optimal result. Moreover, in order to improve the performance of the MO-PPO algorithm, two update strategies, i.e., action-value-based update strategy (AVUS) and loss function-based update strategy (LFUS), are investigated. For the AVUS, the improved point is to integrate the action values of both coverage and capacity and then update the loss function. For the LFUS, the improved point is only to assign dynamic weights for both loss functions of coverage and capacity, while the weights are calculated by a min-norm solver at every update. The numerical results demonstrated that the investigated update strategies outperform the fixed weights MO optimization algorithms in different cases, which includes a different number of sample grids, the number of STAR-RISs, the number of elements in the STAR-RISs, and the size of STAR-RISs. Additionally, the STAR-RIS assisted networks achieve better performance than conventional wireless networks without STAR-RISs. Moreover, with the same bandwidth, millimeter wave is able to provide higher capacity than sub-6 GHz, but at a cost of smaller coverage.


Intelligent Trajectory Design for RIS-NOMA aided Multi-robot Communications

arXiv.org Artificial Intelligence

A novel reconfigurable intelligent surface-aided multi-robot network is proposed, where multiple mobile robots are served by an access point (AP) through non-orthogonal multiple access (NOMA). The goal is to maximize the sum-rate of whole trajectories for the multi-robot system by jointly optimizing trajectories and NOMA decoding orders of robots, phase-shift coefficients of the RIS, and the power allocation of the AP, subject to predicted initial and final positions of robots and the quality of service (QoS) of each robot. To tackle this problem, an integrated machine learning (ML) scheme is proposed, which combines long short-term memory (LSTM)-autoregressive integrated moving average (ARIMA) model and dueling double deep Q-network (D$^{3}$QN) algorithm. For initial and final position prediction for robots, the LSTM-ARIMA is able to overcome the problem of gradient vanishment of non-stationary and non-linear sequences of data. For jointly determining the phase shift matrix and robots' trajectories, D$^{3}$QN is invoked for solving the problem of action value overestimation. Based on the proposed scheme, each robot holds an optimal trajectory based on the maximum sum-rate of a whole trajectory, which reveals that robots pursue long-term benefits for whole trajectory design. Numerical results demonstrated that: 1) LSTM-ARIMA model provides high accuracy predicting model; 2) The proposed D$^{3}$QN algorithm can achieve fast average convergence; and 3) RIS-NOMA networks have superior network performance compared to RIS-aided orthogonal counterparts.


Efficient Wireless Federated Learning with Partial Model Aggregation

arXiv.org Artificial Intelligence

The data heterogeneity across devices and the limited communication resources, e.g., bandwidth and energy, are two of the main bottlenecks for wireless federated learning (FL). To tackle these challenges, we first devise a novel FL framework with partial model aggregation (PMA). This approach aggregates the lower layers of neural networks, responsible for feature extraction, at the parameter server while keeping the upper layers, responsible for complex pattern recognition, at devices for personalization. The proposed PMA-FL is able to address the data heterogeneity and reduce the transmitted information in wireless channels. Then, we derive a convergence bound of the framework under a non-convex loss function setting to reveal the role of unbalanced data size in the learning performance. On this basis, we maximize the scheduled data size to minimize the global loss function through jointly optimize the device scheduling, bandwidth allocation, computation and communication time division policies with the assistance of Lyapunov optimization. Our analysis reveals that the optimal time division is achieved when the communication and computation parts of PMA-FL have the same power. We also develop a bisection method to solve the optimal bandwidth allocation policy and use the set expansion algorithm to address the device scheduling policy. Compared with the benchmark schemes, the proposed PMA-FL improves 3.13\% and 11.8\% accuracy on two typical datasets with heterogeneous data distribution settings, i.e., MINIST and CIFAR-10, respectively. In addition, the proposed joint dynamic device scheduling and resource management approach achieve slightly higher accuracy than the considered benchmarks, but they provide a satisfactory energy and time reduction: 29\% energy or 20\% time reduction on the MNIST; and 25\% energy or 12.5\% time reduction on the CIFAR-10.