Yi, Kexin
M3GIA: A Cognition Inspired Multilingual and Multimodal General Intelligence Ability Benchmark
Song, Wei, Li, Yadong, Xu, Jianhua, Wu, Guowei, Ming, Lingfeng, Yi, Kexin, Luo, Weihua, Li, Houyi, Du, Yi, Guo, Fangda, Yu, Kaicheng
As recent multi-modality large language models (MLLMs) have shown formidable proficiency on various complex tasks, there has been increasing attention on debating whether these models could eventually mirror human intelligence. However, existing benchmarks mainly focus on evaluating solely on task performance, such as the accuracy of identifying the attribute of an object. Combining well-developed cognitive science to understand the intelligence of MLLMs beyond superficial achievements remains largely unexplored. To this end, we introduce the first cognitive-driven multi-lingual and multi-modal benchmark to evaluate the general intelligence ability of MLLMs, dubbed M3GIA. Specifically, we identify five key cognitive factors based on the well-recognized Cattell-Horn-Carrol (CHC) model of intelligence and propose a novel evaluation metric. In addition, since most MLLMs are trained to perform in different languages, a natural question arises: is language a key factor influencing the cognitive ability of MLLMs? As such, we go beyond English to encompass other languages based on their popularity, including Chinese, French, Spanish, Portuguese and Korean, to construct our M3GIA. We make sure all the data relevant to the cultural backgrounds are collected from their native context to avoid English-centric bias. We collected a significant corpus of data from human participants, revealing that the most advanced MLLM reaches the lower boundary of human intelligence in English. Yet, there remains a pronounced disparity in the other five languages assessed. We also reveals an interesting winner takes all phenomenon that are aligned with the discovery in cognitive studies. Our benchmark will be open-sourced, with the aspiration of facilitating the enhancement of cognitive capabilities in MLLMs.
Visual Grounding of Learned Physical Models
Li, Yunzhu, Lin, Toru, Yi, Kexin, Bear, Daniel M., Yamins, Daniel L. K., Wu, Jiajun, Tenenbaum, Joshua B., Torralba, Antonio
Humans intuitively recognize objects' physical properties and predict their motion, even when the objects are engaged in complicated interactions. The abilities to perform physical reasoning and to adapt to new environments, while intrinsic to humans, remain challenging to state-of-the-art computational models. In this work, we present a neural model that simultaneously reasons about physics and makes future predictions based on visual and dynamics priors. The visual prior predicts a particle-based representation of the system from visual observations. An inference module operates on those particles, predicting and refining estimates of particle locations, object states, and physical parameters, subject to the constraints imposed by the dynamics prior, which we refer to as visual grounding. We demonstrate the effectiveness of our method in environments involving rigid objects, deformable materials, and fluids. Experiments show that our model can infer the physical properties within a few observations, which allows the model to quickly adapt to unseen scenarios and make accurate predictions into the future.
CLEVRER: CoLlision Events for Video REpresentation and Reasoning
Yi, Kexin, Gan, Chuang, Li, Yunzhu, Kohli, Pushmeet, Wu, Jiajun, Torralba, Antonio, Tenenbaum, Joshua B.
The ability to reason about temporal and causal events from videos lies at the core of human intelligence. Most video reasoning benchmarks, however, focus on pattern recognition from complex visual and language input, instead of on causal structure. We study the complementary problem, exploring the temporal and causal structures behind videos of objects with simple visual appearance. To this end, we introduce the CoLlision Events for Video REpresentation and Reasoning (CLEVRER), a diagnostic video dataset for systematic evaluation of computational models on a wide range of reasoning tasks. Motivated by the theory of human casual judgment, CLEVRER includes four types of questions: descriptive (e.g., "what color"), explanatory ("what is responsible for"), predictive ("what will happen next"), and counterfactual ("what if"). We evaluate various state-of-the-art models for visual reasoning on our benchmark. While these models thrive on the perception-based task (descriptive), they perform poorly on the causal tasks (explanatory, predictive and counterfactual), suggesting that a principled approach for causal reasoning should incorporate the capability of both perceiving complex visual and language inputs, and understanding the underlying dynamics and causal relations. We also study an oracle model that explicitly combines these components via symbolic representations.
Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding
Yi, Kexin, Wu, Jiajun, Gan, Chuang, Torralba, Antonio, Kohli, Pushmeet, Tenenbaum, Josh
We marry two powerful ideas: deep representation learning for visual recognition and language understanding, and symbolic program execution for reasoning. Our neural-symbolic visual question answering (NS-VQA) system first recovers a structural scene representation from the image and a program trace from the question. It then executes the program on the scene representation to obtain an answer. Incorporating symbolic structure as prior knowledge offers three unique advantages. First, executing programs on a symbolic space is more robust to long program traces; our model can solve complex reasoning tasks better, achieving an accuracy of 99.8% on the CLEVR dataset. Second, the model is more data- and memory-efficient: it performs well after learning on a small number of training data; it can also encode an image into a compact representation, requiring less storage than existing methods for offline question answering. Third, symbolic program execution offers full transparency to the reasoning process; we are thus able to interpret and diagnose each execution step.
Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding
Yi, Kexin, Wu, Jiajun, Gan, Chuang, Torralba, Antonio, Kohli, Pushmeet, Tenenbaum, Josh
We marry two powerful ideas: deep representation learning for visual recognition and language understanding, and symbolic program execution for reasoning. Our neural-symbolic visual question answering (NS-VQA) system first recovers a structural scene representation from the image and a program trace from the question. It then executes the program on the scene representation to obtain an answer. Incorporating symbolic structure as prior knowledge offers three unique advantages. First, executing programs on a symbolic space is more robust to long program traces; our model can solve complex reasoning tasks better, achieving an accuracy of 99.8% on the CLEVR dataset. Second, the model is more data- and memory-efficient: it performs well after learning on a small number of training data; it can also encode an image into a compact representation, requiring less storage than existing methods for offline question answering. Third, symbolic program execution offers full transparency to the reasoning process; we are thus able to interpret and diagnose each execution step.
Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding
Yi, Kexin, Wu, Jiajun, Gan, Chuang, Torralba, Antonio, Kohli, Pushmeet, Tenenbaum, Joshua B.
We marry two powerful ideas: deep representation learning for visual recognition and language understanding, and symbolic program execution for reasoning. Our neural-symbolic visual question answering (NS-VQA) system first recovers a structural scene representation from the image and a program trace from the question. It then executes the program on the scene representation to obtain an answer. Incorporating symbolic structure as prior knowledge offers three unique advantages. First, executing programs on a symbolic space is more robust to long program traces; our model can solve complex reasoning tasks better, achieving an accuracy of 99.8% on the CLEVR dataset. Second, the model is more data- and memory-efficient: it performs well after learning on a small number of training data; it can also encode an image into a compact representation, requiring less storage than existing methods for offline question answering. Third, symbolic program execution offers full transparency to the reasoning process; we are thus able to interpret and diagnose each execution step.
Roll-back Hamiltonian Monte Carlo
Yi, Kexin, Doshi-Velez, Finale
We propose a new framework for Hamiltonian Monte Carlo (HMC) on truncated probability distributions with smooth underlying density functions. Traditional HMC requires computing the gradient of potential function associated with the target distribution, and therefore does not perform its full power on truncated distributions due to lack of continuity and differentiability. In our framework, we introduce a sharp sigmoid factor in the density function to approximate the probability drop at the truncation boundary. The target potential function is approximated by a new potential which smoothly extends to the entire sample space. HMC is then performed on the approximate potential. While our method is easy to implement and applies to a wide range of problems, it also achieves comparable computational efficiency on various sampling tasks compared to other baseline methods. RBHMC also gives rise to a new approach for Bayesian inference on constrained spaces.