Goto

Collaborating Authors

 Yi, Jinfeng


Universal Online Convex Optimization Meets Second-order Bounds

arXiv.org Artificial Intelligence

Recently, several universal methods have been proposed for online convex optimization, and attain minimax rates for multiple types of convex functions simultaneously. However, they need to design and optimize one surrogate loss for each type of functions, making it difficult to exploit the structure of the problem and utilize existing algorithms. In this paper, we propose a simple strategy for universal online convex optimization, which avoids these limitations. The key idea is to construct a set of experts to process the original online functions, and deploy a meta-algorithm over the linearized losses to aggregate predictions from experts. Specifically, the meta-algorithm is required to yield a second-order bound with excess losses, so that it can leverage strong convexity and exponential concavity to control the meta-regret. In this way, our strategy inherits the theoretical guarantee of any expert designed for strongly convex functions and exponentially concave functions, up to a double logarithmic factor. As a result, we can plug in off-the-shelf online solvers as black-box experts to deliver problem-dependent regret bounds. For general convex functions, it maintains the minimax optimality and also achieves a small-loss bound. Furthermore, we extend our universal strategy to online composite optimization, where the loss function comprises a time-varying function and a fixed regularizer. To deal with the composite loss functions, we employ a meta-algorithm based on the optimistic online learning framework, which not only possesses a second-order bound, but also can utilize estimations for upcoming loss functions. With appropriate configurations, we demonstrate that the additional regularizer does not contribute to the meta-regret, thus maintaining the universality in the composite setting.


Self-supervised Graph Neural Network for Mechanical CAD Retrieval

arXiv.org Artificial Intelligence

CAD (Computer-Aided Design) plays a crucial role in mechanical industry, where large numbers of similar-shaped CAD parts are often created. Efficiently reusing these parts is key to reducing design and production costs for enterprises. Retrieval systems are vital for achieving CAD reuse, but the complex shapes of CAD models are difficult to accurately describe using text or keywords, making traditional retrieval methods ineffective. While existing representation learning approaches have been developed for CAD, manually labeling similar samples in these methods is expensive. Additionally, CAD models' unique parameterized data structure presents challenges for applying existing 3D shape representation learning techniques directly. In this work, we propose GC-CAD, a self-supervised contrastive graph neural network-based method for mechanical CAD retrieval that directly models parameterized CAD raw files. GC-CAD consists of two key modules: structure-aware representation learning and contrastive graph learning framework. The method leverages graph neural networks to extract both geometric and topological information from CAD models, generating feature representations. We then introduce a simple yet effective contrastive graph learning framework approach, enabling the model to train without manual labels and generate retrieval-ready representations. Experimental results on four datasets including human evaluation demonstrate that the proposed method achieves significant accuracy improvements and up to 100 times efficiency improvement over the baseline methods.


Efficient Algorithms for Generalized Linear Bandits with Heavy-tailed Rewards

arXiv.org Artificial Intelligence

This paper investigates the problem of generalized linear bandits with heavy-tailed rewards, whose $(1+\epsilon)$-th moment is bounded for some $\epsilon\in (0,1]$. Although there exist methods for generalized linear bandits, most of them focus on bounded or sub-Gaussian rewards and are not well-suited for many real-world scenarios, such as financial markets and web-advertising. To address this issue, we propose two novel algorithms based on truncation and mean of medians. These algorithms achieve an almost optimal regret bound of $\widetilde{O}(dT^{\frac{1}{1+\epsilon}})$, where $d$ is the dimension of contextual information and $T$ is the time horizon. Our truncation-based algorithm supports online learning, distinguishing it from existing truncation-based approaches. Additionally, our mean-of-medians-based algorithm requires only $O(\log T)$ rewards and one estimator per epoch, making it more practical. Moreover, our algorithms improve the regret bounds by a logarithmic factor compared to existing algorithms when $\epsilon=1$. Numerical experimental results confirm the merits of our algorithms.


Trustworthy AI: From Principles to Practices

arXiv.org Artificial Intelligence

Fast developing artificial intelligence (AI) technology has enabled various applied systems deployed in the real world, impacting people's everyday lives. However, many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc., which not only degrades user experience but erodes the society's trust in all AI systems. In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems. We first introduce the theoretical framework of important aspects of AI trustworthiness, including robustness, generalization, explainability, transparency, reproducibility, fairness, privacy preservation, alignment with human values, and accountability. We then survey leading approaches in these aspects in the industry. To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems, ranging from data acquisition to model development, to development and deployment, finally to continuous monitoring and governance. In this framework, we offer concrete action items to practitioners and societal stakeholders (e.g., researchers and regulators) to improve AI trustworthiness. Finally, we identify key opportunities and challenges in the future development of trustworthy AI systems, where we identify the need for paradigm shift towards comprehensive trustworthy AI systems.


Training Meta-Surrogate Model for Transferable Adversarial Attack

arXiv.org Artificial Intelligence

We consider adversarial attacks to a black-box model when no queries are allowed. In this setting, many methods directly attack surrogate models and transfer the obtained adversarial examples to fool the target model. Plenty of previous works investigated what kind of attacks to the surrogate model can generate more transferable adversarial examples, but their performances are still limited due to the mismatches between surrogate models and the target model. In this paper, we tackle this problem from a novel angle -- instead of using the original surrogate models, can we obtain a Meta-Surrogate Model (MSM) such that attacks to this model can be easier transferred to other models? We show that this goal can be mathematically formulated as a well-posed (bi-level-like) optimization problem and design a differentiable attacker to make training feasible. Given one or a set of surrogate models, our method can thus obtain an MSM such that adversarial examples generated on MSM enjoy eximious transferability. Comprehensive experiments on Cifar-10 and ImageNet demonstrate that by attacking the MSM, we can obtain stronger transferable adversarial examples to fool black-box models including adversarially trained ones, with much higher success rates than existing methods. The proposed method reveals significant security challenges of deep models and is promising to be served as a state-of-the-art benchmark for evaluating the robustness of deep models in the black-box setting.


Towards Heterogeneous Clients with Elastic Federated Learning

arXiv.org Artificial Intelligence

Federated learning involves training machine learning models over devices or data silos, such as edge processors or data warehouses, while keeping the data local. Training in heterogeneous and potentially massive networks introduces bias into the system, which is originated from the non-IID data and the low participation rate in reality. In this paper, we propose Elastic Federated Learning (EFL), an unbiased algorithm to tackle the heterogeneity in the system, which makes the most informative parameters less volatile during training, and utilizes the incomplete local updates. It is an efficient and effective algorithm that compresses both upstream and downstream communications. Theoretically, the algorithm has convergence guarantee when training on the non-IID data at the low participation rate. Empirical experiments corroborate the competitive performance of EFL framework on the robustness and the efficiency.


Leveraging Tripartite Interaction Information from Live Stream E-Commerce for Improving Product Recommendation

arXiv.org Artificial Intelligence

Recently, a new form of online shopping becomes more and more popular, which combines live streaming with E-Commerce activity. The streamers introduce products and interact with their audiences, and hence greatly improve the performance of selling products. Despite of the successful applications in industries, the live stream E-commerce has not been well studied in the data science community. To fill this gap, we investigate this brand-new scenario and collect a real-world Live Stream E-Commerce (LSEC) dataset. Different from conventional E-commerce activities, the streamers play a pivotal role in the LSEC events. Hence, the key is to make full use of rich interaction information among streamers, users, and products. We first conduct data analysis on the tripartite interaction data and quantify the streamer's influence on users' purchase behavior. Based on the analysis results, we model the tripartite information as a heterogeneous graph, which can be decomposed to multiple bipartite graphs in order to better capture the influence. We propose a novel Live Stream E-Commerce Graph Neural Network framework (LSEC-GNN) to learn the node representations of each bipartite graph, and further design a multi-task learning approach to improve product recommendation. Extensive experiments on two real-world datasets with different scales show that our method can significantly outperform various baseline approaches.


Fast Certified Robust Training via Better Initialization and Shorter Warmup

arXiv.org Artificial Intelligence

Recently, bound propagation based certified adversarial defense have been proposed for training neural networks with certifiable robustness guarantees. Despite state-of-the-art (SOTA) methods including interval bound propagation (IBP) and CROWN-IBP have per-batch training complexity similar to standard neural network training, to reach SOTA performance they usually need a long warmup schedule with hundreds or thousands epochs and are thus still quite costly for training. In this paper, we discover that the weight initialization adopted by prior works, such as Xavier or orthogonal initialization, which was originally designed for standard network training, results in very loose certified bounds at initialization thus a longer warmup schedule must be used. We also find that IBP based training leads to a significant imbalance in ReLU activation states, which can hamper model performance. Based on our findings, we derive a new IBP initialization as well as principled regularizers during the warmup stage to stabilize certified bounds during initialization and warmup stage, which can significantly reduce the warmup schedule and improve the balance of ReLU activation states. Additionally, we find that batch normalization (BN) is a crucial architectural element to build best-performing networks for certified training, because it helps stabilize bound variance and balance ReLU activation states. With our proposed initialization, regularizers and architectural changes combined, we are able to obtain 65.03% verified error on CIFAR-10 ($\epsilon=\frac{8}{255}$) and 82.13% verified error on TinyImageNet ($\epsilon=\frac{1}{255}$) using very short training schedules (160 and 80 total epochs, respectively), outperforming literature SOTA trained with a few hundreds or thousands epochs.


On the Adversarial Robustness of Visual Transformers

arXiv.org Artificial Intelligence

Following the success in advancing natural language processing and understanding, transformers are expected to bring revolutionary changes to computer vision. This work provides the first and comprehensive study on the robustness of vision transformers (ViTs) against adversarial perturbations. Tested on various white-box and transfer attack settings, we find that ViTs possess better adversarial robustness when compared with convolutional neural networks (CNNs). We summarize the following main observations contributing to the improved robustness of ViTs: 1) Features learned by ViTs contain less low-level information and are more generalizable, which contributes to superior robustness against adversarial perturbations. 2) Introducing convolutional or tokens-to-token blocks for learning low-level features in ViTs can improve classification accuracy but at the cost of adversarial robustness. 3) Increasing the proportion of transformers in the model structure (when the model consists of both transformer and CNN blocks) leads to better robustness. But for a pure transformer model, simply increasing the size or adding layers cannot guarantee a similar effect. 4) Pre-training on larger datasets does not significantly improve adversarial robustness though it is critical for training ViTs. 5) Adversarial training is also applicable to ViT for training robust models. Furthermore, feature visualization and frequency analysis are conducted for explanation. The results show that ViTs are less sensitive to high-frequency perturbations than CNNs and there is a high correlation between how well the model learns low-level features and its robustness against different frequency-based perturbations.


Provably Robust Metric Learning

arXiv.org Machine Learning

Metric learning has been an important family of machine learning algorithms and has achieved successes on several problems, including computer vision [24, 17, 18], text analysis [27], meta learning [38, 35] and others [34, 45, 47]. Given a set of training samples, metric learning aims to learn a good distance measurement such that items in the same class are closer to each other in the learned metric space, which is crucial for classification and similarity search. Since this objective is directly related to the assumption of nearest neighbor classifiers, most of the metric learning algorithms can be naturally and successfully combined with K-Nearest Neighbor (K-NN) classifiers. Adversarial robustness of machine learning algorithms has been studied extensively in recent years due to the need of robustness guarantees in real world systems. It has been demonstrated that neural networks can be easily attacked by adversarial perturbations in the input space [37, 16, 2], and such perturbations can be computed efficiently in both white-box [4, 29] and black-box settings [7, 19, 9]. Therefore, many defense algorithms have been proposed to improve the robustness of neural networks [26, 29].