Yi, Dongyun
Joint Embedding Learning and Low-Rank Approximation: A Framework for Incomplete Multi-view Learning
Tao, Hong, Hou, Chenping, Yi, Dongyun, Zhu, Jubo
In real-world applications, not all instances in multi-view data are fully represented. To deal with incomplete multi-view data, traditional multi-view algorithms usually throw away the incomplete instances, resulting in loss of available information. To overcome this loss, Incomplete Multi-view Learning (IML) has become a hot research topic. In this paper, we propose a general IML framework for unifying existing IML methods and gaining insight into IML. The proposed framework jointly performs embedding learning and low-rank approximation. Concretely, it approximates the incomplete data by a set of low-rank matrices and learns a full and common embedding by linear transformation. Several existing IML methods can be unified as special cases of the framework. More interestingly, some linear transformation based full-view methods can be adapted to IML directly with the guidance of the framework. This bridges the gap between full multi-view learning and IML. Moreover, the framework can provide guidance for developing new algorithms. For illustration, within the framework, we propose a specific method, termed as Incomplete Multi-view Learning with Block Diagonal Representation (IML-BDR). Based on the assumption that the sampled examples have approximate linear subspace structure, IML-BDR uses the block diagonal structure prior to learn the full embedding, which would lead to more correct clustering. A convergent alternating iterative algorithm with the Successive Over-Relaxation (SOR) optimization technique is devised for optimization. Experimental results on various datasets demonstrate the effectiveness of IML-BDR.
Reliable Multi-View Clustering
Tao, Hong (National University of Defense Technology) | Hou, Chenping (National University of Defense Technology) | Liu, Xinwang (National University of Defense Technology) | Liu, Tongliang (University of Sydney) | Yi, Dongyun (National University of Defense Technology) | Zhu, Jubo (National University of Defense Technology)
With the advent of multi-view data, multi-view learning (MVL) has become an important research direction in machine learning. It is usually expected that multi-view algorithms can obtain better performance than that of merely using a single view. However, previous researches have pointed out that sometimes the utilization of multiple views may even deteriorate the performance. This will be a stumbling block for the practical use of MVL in real applications, especially for tasks requiring high dependability. Thus, it is eager to design reliable multi-view approaches, such that their performance is never degenerated by exploiting multiple views.This issue is vital but rarely studied. In this paper, we focus on clustering and propose the Reliable Multi-View Clustering (RMVC) method. Based on several candidate multi-view clusterings, RMVC maximizes the worst-case performance gain against the best single view clustering, which is equivalently expressed as no label information available. Specifically, employing the squared χ 2 distance for clustering comparison makes the formulation of RMVC easy to solve, and an efficient strategy is proposed for optimization. Theoretically, it can be proved that the performance of RMVC will never be significantly decreased under some assumption. Experimental results on a number of data sets demonstrate that the proposed method can effectively improve the reliability of multi-view clustering.