Yi, Bowen
Examining Spanish Counseling with MIDAS: a Motivational Interviewing Dataset in Spanish
Gunal, Aylin, Yi, Bowen, Piette, John, Mihalcea, Rada, Pérez-Rosas, Verónica
Cultural and language factors significantly influence counseling, but Natural Language Processing research has not yet examined whether the findings of conversational analysis for counseling conducted in English apply to other languages. This paper presents a first step towards this direction. We introduce MIDAS (Motivational Interviewing Dataset in Spanish), a counseling dataset created from public video sources that contains expert annotations for counseling reflections and questions. Using this dataset, we explore language-based differences in counselor behavior in English and Spanish and develop classifiers in monolingual and multilingual settings, demonstrating its applications in counselor behavioral coding tasks.
The Generation Gap:Exploring Age Bias in the Underlying Value Systems of Large Language Models
Liu, Siyang, Maturi, Trish, Yi, Bowen, Shen, Siqi, Mihalcea, Rada
In this paper, we explore the alignment of values in Large Language Models (LLMs) with specific age groups, leveraging data from the World Value Survey across thirteen categories. Through a diverse set of prompts tailored to ensure response robustness, we find a general inclination of LLM values towards younger demographics, especially in the US. Additionally, we explore the impact of incorporating age identity information in prompts and observe challenges in mitigating value discrepancies with different age cohorts. Our findings highlight the age bias in LLMs and provide insights for future work. Materials for our analysis will be available via anonymous.github
Simultaneous Position-and-Stiffness Control of Underactuated Antagonistic Tendon-Driven Continuum Robots
Yi, Bowen, Fan, Yeman, Liu, Dikai, Romero, Jose Guadalupe
Continuum robots have gained widespread popularity due to their inherent compliance and flexibility, particularly their adjustable levels of stiffness for various application scenarios. Despite efforts to dynamic modeling and control synthesis over the past decade, few studies have incorporated stiffness regulation into their feedback control design; however, this is one of the initial motivations to develop continuum robots. This paper addresses the crucial challenge of controlling both the position and stiffness of underactuated continuum robots actuated by antagonistic tendons. We begin by presenting a rigid-link dynamical model that can analyze the open-loop stiffening of tendon-driven continuum robots. Based on this model, we propose a novel passivity-based position-and-stiffness controller that adheres to the non-negative tension constraint. Comprehensive experiments on our continuum robot validate the theoretical results and demonstrate the efficacy and precision of this approach.
A novel model for layer jamming-based continuum robots
Yi, Bowen, Fan, Yeman, Liu, Dikai
Continuum robots with variable stiffness have gained wide popularity in the last decade. Layer jamming (LJ) has emerged as a simple and efficient technique to achieve tunable stiffness for continuum robots. Despite its merits, the development of a control-oriented dynamical model tailored for this specific class of robots remains an open problem in the literature. This paper aims to present the first solution, to the best of our knowledge, to close the gap. We propose an energy-based model that is integrated with the LuGre frictional model for LJ-based continuum robots. Then, we take a comprehensive theoretical analysis for this model, focusing on two fundamental characteristics of LJ-based continuum robots: shape locking and adjustable stiffness. To validate the modeling approach and theoretical results, a series of experiments using our \textit{OctRobot-I} continuum robotic platform was conducted. The results show that the proposed model is capable of interpreting and predicting the dynamical behaviors in LJ-based continuum robots.