Goto

Collaborating Authors

 Yeung, Calvin


OpenSTARLab: Open Approach for Spatio-Temporal Agent Data Analysis in Soccer

arXiv.org Artificial Intelligence

Sports analytics has become both more professional and sophisticated, driven by the growing availability of detailed performance data. This progress enables applications such as match outcome prediction, player scouting, and tactical analysis. In soccer, the effective utilization of event and tracking data is fundamental for capturing and analyzing the dynamics of the game. However, there are two primary challenges: the limited availability of event data, primarily restricted to top-tier teams and leagues, and the scarcity and high cost of tracking data, which complicates its integration with event data for comprehensive analysis. Here we propose OpenSTARLab, an open-source framework designed to democratize spatio-temporal agent data analysis in sports by addressing these key challenges. OpenSTARLab includes the Pre-processing Package that standardizes event and tracking data through Unified and Integrated Event Data and State-Action-Reward formats, the Event Modeling Package that implements deep learning-based event prediction, alongside the RLearn Package for reinforcement learning tasks. These technical components facilitate the handling of diverse data sources and support advanced analytical tasks, thereby enhancing the overall functionality and usability of the framework. To assess OpenSTARLab's effectiveness, we conducted several experimental evaluations. These demonstrate the superior performance of the specific event prediction model in terms of action and time prediction accuracies and maintained its robust event simulation performance. Furthermore, reinforcement learning experiments reveal a trade-off between action accuracy and temporal difference loss and show comprehensive visualization. Overall, OpenSTARLab serves as a robust platform for researchers and practitioners, enhancing innovation and collaboration in the field of soccer data analytics.


A Zero-Shot LLM Framework for Automatic Assignment Grading in Higher Education

arXiv.org Artificial Intelligence

Automated grading has become an essential tool in education technology due to its ability to efficiently assess large volumes of student work, provide consistent and unbiased evaluations, and deliver immediate feedback to enhance learning. However, current systems face significant limitations, including the need for large datasets in few-shot learning methods, a lack of personalized and actionable feedback, and an overemphasis on benchmark performance rather than student experience. To address these challenges, we propose a Zero-Shot Large Language Model (LLM)-Based Automated Assignment Grading (AAG) system. This framework leverages prompt engineering to evaluate both computational and explanatory student responses without requiring additional training or fine-tuning. The AAG system delivers tailored feedback that highlights individual strengths and areas for improvement, thereby enhancing student learning outcomes. Our study demonstrates the system's effectiveness through comprehensive evaluations, including survey responses from higher education students that indicate significant improvements in motivation, understanding, and preparedness compared to traditional grading methods. The results validate the AAG system's potential to transform educational assessment by prioritizing learning experiences and providing scalable, high-quality feedback.


AutoSoccerPose: Automated 3D posture Analysis of Soccer Shot Movements

arXiv.org Artificial Intelligence

Image understanding is a foundational task in computer vision, with recent applications emerging in soccer posture analysis. However, existing publicly available datasets lack comprehensive information, notably in the form of posture sequences and 2D pose annotations. Moreover, current analysis models often rely on interpretable linear models (e.g., PCA and regression), limiting their capacity to capture non-linear spatiotemporal relationships in complex and diverse scenarios. To address these gaps, we introduce the 3D Shot Posture (3DSP) dataset in soccer broadcast videos, which represents the most extensive sports image dataset with 2D pose annotations to our knowledge. Additionally, we present the 3DSP-GRAE (Graph Recurrent AutoEncoder) model, a non-linear approach for embedding pose sequences. Furthermore, we propose AutoSoccerPose, a pipeline aimed at semi-automating 2D and 3D pose estimation and posture analysis. While achieving full automation proved challenging, we provide a foundational baseline, extending its utility beyond the scope of annotated data. We validate AutoSoccerPose on SoccerNet and 3DSP datasets, and present posture analysis results based on 3DSP. The dataset, code, and models are available at: https://github.com/calvinyeungck/3D-Shot-Posture-Dataset.


Generalized Holographic Reduced Representations

arXiv.org Artificial Intelligence

Deep learning has achieved remarkable success in recent years. Central to its success is its ability to learn representations that preserve task-relevant structure. However, massive energy, compute, and data costs are required to learn general representations. This paper explores Hyperdimensional Computing (HDC), a computationally and data-efficient brain-inspired alternative. HDC acts as a bridge between connectionist and symbolic approaches to artificial intelligence (AI), allowing explicit specification of representational structure as in symbolic approaches while retaining the flexibility of connectionist approaches. However, HDC's simplicity poses challenges for encoding complex compositional structures, especially in its binding operation. To address this, we propose Generalized Holographic Reduced Representations (GHRR), an extension of Fourier Holographic Reduced Representations (FHRR), a specific HDC implementation. GHRR introduces a flexible, non-commutative binding operation, enabling improved encoding of complex data structures while preserving HDC's desirable properties of robustness and transparency. In this work, we introduce the GHRR framework, prove its theoretical properties and its adherence to HDC properties, explore its kernel and binding characteristics, and perform empirical experiments showcasing its flexible non-commutativity, enhanced decoding accuracy for compositional structures, and improved memorization capacity compared to FHRR.


Self-Attention Based Semantic Decomposition in Vector Symbolic Architectures

arXiv.org Artificial Intelligence

Vector Symbolic Architectures (VSAs) have emerged as a novel framework for enabling interpretable machine learning algorithms equipped with the ability to reason and explain their decision processes. The basic idea is to represent discrete information through high dimensional random vectors. Complex data structures can be built up with operations over vectors such as the "binding" operation involving element-wise vector multiplication, which associates data together. The reverse task of decomposing the associated elements is a combinatorially hard task, with an exponentially large search space. The main algorithm for performing this search is the resonator network, inspired by Hopfield network-based memory search operations. In this work, we introduce a new variant of the resonator network, based on self-attention based update rules in the iterative search problem. This update rule, based on the Hopfield network with log-sum-exp energy function and norm-bounded states, is shown to substantially improve the performance and rate of convergence. As a result, our algorithm enables a larger capacity for associative memory, enabling applications in many tasks like perception based pattern recognition, scene decomposition, and object reasoning. We substantiate our algorithm with a thorough evaluation and comparisons to baselines.


Machine Learning for Soccer Match Result Prediction

arXiv.org Artificial Intelligence

Machine learning has become a common approach to predicting the outcomes of soccer matches, and the body of literature in this domain has grown substantially in the past decade and a half. This chapter discusses available datasets, the types of models and features, and ways of evaluating model performance in this application domain. The aim of this chapter is to give a broad overview of the current state and potential future developments in machine learning for soccer match results prediction, as a resource for those interested in conducting future studies in the area. Our main findings are that while gradient-boosted tree models such as CatBoost, applied to soccer-specific ratings such as pi-ratings, are currently the best-performing models on datasets containing only goals as the match features, there needs to be a more thorough comparison of the performance of deep learning models and Random Forest on a range of datasets with different types of features. Furthermore, new rating systems using both player- and team-level information and incorporating additional information from, e.g., spatiotemporal tracking and event data, could be investigated further. Finally, the interpretability of match result prediction models needs to be enhanced for them to be more useful for team management.


Foul prediction with estimated poses from soccer broadcast video

arXiv.org Artificial Intelligence

Recent advances in computer vision have made significant progress in tracking and pose estimation of sports players. However, there have been fewer studies on behavior prediction with pose estimation in sports, in particular, the prediction of soccer fouls is challenging because of the smaller image size of each player and of difficulty in the usage of e.g., the ball and pose information. In our research, we introduce an innovative deep learning approach for anticipating soccer fouls. This method integrates video data, bounding box positions, image details, and pose information by curating a novel soccer foul dataset. Our model utilizes a combination of convolutional and recurrent neural networks (CNNs and RNNs) to effectively merge information from these four modalities. The experimental results show that our full model outperformed the ablated models, and all of the RNN modules, bounding box position and image, and estimated pose were useful for the foul prediction. Our findings have important implications for a deeper understanding of foul play in soccer and provide a valuable reference for future research and practice in this area.


Evaluating Soccer Match Prediction Models: A Deep Learning Approach and Feature Optimization for Gradient-Boosted Trees

arXiv.org Artificial Intelligence

Machine learning models have become increasingly popular for predicting the results of soccer matches, however, the lack of publicly-available benchmark datasets has made model evaluation challenging. The 2023 Soccer Prediction Challenge required the prediction of match results first in terms of the exact goals scored by each team, and second, in terms of the probabilities for a win, draw, and loss. The original training set of matches and features, which was provided for the competition, was augmented with additional matches that were played between 4 April and 13 April 2023, representing the period after which the training set ended, but prior to the first matches that were to be predicted (upon which the performance was evaluated). A CatBoost model was employed using pi-ratings as the features, which were initially identified as the optimal choice for calculating the win/draw/loss probabilities. Notably, deep learning models have frequently been disregarded in this particular task. Therefore, in this study, we aimed to assess the performance of a deep learning model and determine the optimal feature set for a gradient-boosted tree model. The model was trained using the most recent five years of data, and three training and validation sets were used in a hyperparameter grid search. The results from the validation sets show that our model had strong performance and stability compared to previously published models from the 2017 Soccer Prediction Challenge for win/draw/loss prediction.