Goto

Collaborating Authors

 Yener, Bülent


SeizureTransformer: Scaling U-Net with Transformer for Simultaneous Time-Step Level Seizure Detection from Long EEG Recordings

arXiv.org Artificial Intelligence

--Epilepsy is a common neurological disorder that affects around 65 million people worldwide. Detecting seizures quickly and accurately is vital, given the prevalence and severity of the associated complications. Recently, deep learning-based automated seizure detection methods have emerged as solutions; however, most existing methods require extensive post-processing and do not effectively handle the crucial long-range patterns in EEG data. In this work, we propose SeizureTransformer, a simple model comprised of (i) a deep encoder comprising 1D convolutions (ii) a residual CNN stack and a transformer encoder to embed previous output into high-level representation with contextual information, and (iii) streamlined decoder which converts these features into a sequence of probabilities, directly indicating the presence or absence of seizures at every time step. Extensive experiments on public and private EEG seizure detection datasets demonstrate that our model significantly outperforms existing approaches (ranked in the first place in the 2025 "seizure detection challenge" organized in the International Conference on Artificial Intelligence in Epilepsy and Other Neurological Disorders), underscoring its potential for real-time, precise seizure detection. Epilepsy is a prevalent neurological disorder distinguished by recurring seizures. Worldwide, there are approximately 65 million people with epilepsy, more than Parkinson's disease, Alzheimer's disease, and Multiple Sclerosis combined.


ZeroSumEval: An Extensible Framework For Scaling LLM Evaluation with Inter-Model Competition

arXiv.org Artificial Intelligence

We introduce ZeroSumEval, a dynamic, competition-based, and evolving evaluation framework for Large Language Models (LLMs) that leverages competitive games. ZeroSumEval encompasses a diverse suite of games, including security challenges (Capture the Flag), classic board games (chess), and knowledge tests (MathQuiz). These games are designed to evaluate a range of capabilities such as strategic reasoning, planning, knowledge application, safety, and adaptability. Building upon recent studies that highlight the effectiveness of game-based evaluations for LLMs, ZeroSumEval enhances these approaches by providing a standardized and extensible framework for easily implementing games and leverages DSPy to provide a better abstraction for LLM player strategies.


Deception by Omission: Using Adversarial Missingness to Poison Causal Structure Learning

arXiv.org Artificial Intelligence

Inference of causal structures from observational data is a key component of causal machine learning; in practice, this data may be incompletely observed. Prior work has demonstrated that adversarial perturbations of completely observed training data may be used to force the learning of inaccurate causal structural models (SCMs). However, when the data can be audited for correctness (e.g., it is crytographically signed by its source), this adversarial mechanism is invalidated. This work introduces a novel attack methodology wherein the adversary deceptively omits a portion of the true training data to bias the learned causal structures in a desired manner. Theoretically sound attack mechanisms are derived for the case of arbitrary SCMs, and a sample-efficient learning-based heuristic is given for Gaussian SCMs. Experimental validation of these approaches on real and synthetic data sets demonstrates the effectiveness of adversarial missingness attacks at deceiving popular causal structure learning algorithms.


Deep density ratio estimation for change point detection

arXiv.org Artificial Intelligence

In this work, we propose new objective functions to train deep neural network based density ratio estimators and apply it to a change point detection problem. Existing methods use linear combinations of kernels to approximate the density ratio function by solving a convex constrained minimization problem. Approximating the density ratio function using a deep neural network requires defining a suitable objective function to optimize. We formulate and compare objective functions that can be minimized using gradient descent and show that the network can effectively learn to approximate the density ratio function. Using our deep density ratio estimation objective function results in better performance on a seizure detection task than other (kernel and neural network based) density ratio estimation methods and other window-based change point detection algorithms. We also show that the method can still support other neural network architectures, such as convolutional networks.


Thwarting finite difference adversarial attacks with output randomization

arXiv.org Machine Learning

Adversarial examples pose a threat to deep neural network models in a variety of scenarios, from settings where the adversary has complete knowledge of the model and to the opposite "black box" setting. Black box attacks are particularly threatening as the adversary only needs access to the input and output of the model. Defending against black box adversarial example generation attacks is paramount as currently proposed defenses are not effective. Since these types of attacks rely on repeated queries to the model to estimate gradients over input dimensions, we investigate the use of randomization to thwart such adversaries from successfully creating adversarial examples. Randomization applied to the output of the deep neural network model has the potential to confuse potential attackers, however this introduces a tradeoff between accuracy and robustness. We show that for certain types of randomization, we can bound the probability of introducing errors by carefully setting distributional parameters. For the particular case of finite difference black box attacks, we quantify the error introduced by the defense in the finite difference estimate of the gradient. Lastly, we show empirically that the defense can thwart two adaptive black box adversarial attack algorithms.


Focal onset seizure prediction using convolutional networks

arXiv.org Machine Learning

Objective: This work investigates the hypothesis that focal seizures can be predicted using scalp electroencephalogram (EEG) data. Our first aim is to learn features that distinguish between the interictal and preictal regions. The second aim is to define a prediction horizon in which the prediction is as accurate and as early as possible, clearly two competing objectives. Methods: Convolutional filters on the wavelet transformation of the EEG signal are used to define and learn quantitative signatures for each period: interictal, preictal, and ictal. The optimal seizure prediction horizon is also learned from the data as opposed to making an a priori assumption. Results: Computational solutions to the optimization problem indicate a ten-minute seizure prediction horizon. This result is verified by measuring Kullback-Leibler divergence on the distributions of the automatically extracted features. Conclusion: The results on the EEG database of 204 recordings demonstrate that (i) the preictal phase transition occurs approximately ten minutes before seizure onset, and (ii) the prediction results on the test set are promising, with a sensitivity of 87.8% and a low false prediction rate of 0.142 FP/h. Our results significantly outperform a random predictor and other seizure prediction algorithms. Significance: We demonstrate that a robust set of features can be learned from scalp EEG that characterize the preictal state of focal seizures.