Ye, Zheyu
Vision-R1: Incentivizing Reasoning Capability in Multimodal Large Language Models
Huang, Wenxuan, Jia, Bohan, Zhai, Zijie, Cao, Shaosheng, Ye, Zheyu, Zhao, Fei, Xu, Zhe, Hu, Yao, Lin, Shaohui
DeepSeek-R1-Zero has successfully demonstrated the emergence of reasoning capabilities in LLMs purely through Reinforcement Learning (RL). Inspired by this breakthrough, we explore how RL can be utilized to enhance the reasoning capability of MLLMs. However, direct training with RL struggles to activate complex reasoning capabilities such as questioning and reflection in MLLMs, due to the absence of substantial high-quality multimodal reasoning data. To address this issue, we propose the reasoning MLLM, Vision-R1, to improve multimodal reasoning capability. Specifically, we first construct a high-quality multimodal CoT dataset without human annotations by leveraging an existing MLLM and DeepSeek-R1 through modality bridging and data filtering to obtain a 200K multimodal CoT dataset, Vision-R1-cold dataset. It serves as cold-start initialization data for Vision-R1. To mitigate the optimization challenges caused by overthinking after cold start, we propose Progressive Thinking Suppression Training (PTST) strategy and employ Group Relative Policy Optimization (GRPO) with the hard formatting result reward function to gradually refine the model's ability to learn correct and complex reasoning processes on a 10K multimodal math dataset. Comprehensive experiments show our model achieves an average improvement of $\sim$6% across various multimodal math reasoning benchmarks. Vision-R1-7B achieves a 73.5% accuracy on the widely used MathVista benchmark, which is only 0.4% lower than the leading reasoning model, OpenAI O1. The datasets and code will be released in: https://github.com/Osilly/Vision-R1 .
Dynamic-LLaVA: Efficient Multimodal Large Language Models via Dynamic Vision-language Context Sparsification
Huang, Wenxuan, Zhai, Zijie, Shen, Yunhang, Cao, Shaosheng, Zhao, Fei, Xu, Xiangfeng, Ye, Zheyu, Lin, Shaohui
Multimodal Large Language Models (MLLMs) have achieved remarkable success in vision understanding, reasoning, and interaction. However, the inference computation and memory increase progressively with the generation of output tokens during decoding, directly affecting the efficacy of MLLMs. Existing methods attempt to reduce the vision context redundancy to achieve efficient MLLMs. Unfortunately, the efficiency benefits of the vision context reduction in the prefill stage gradually diminish during the decoding stage. To address this problem, we proposed a dynamic vision-language context sparsification framework Dynamic-LLaVA, which dynamically reduces the redundancy of vision context in the prefill stage and decreases the memory and computation overhead of the generated language context during decoding. Dynamic-LLaVA designs a tailored sparsification inference scheme for different inference modes, i.e., prefill, decoding with and without KV cache, to achieve efficient inference of MLLMs. In practice, Dynamic-LLaVA can reduce computation consumption by $\sim$75\% in the prefill stage. Meanwhile, throughout the entire generation process of MLLMs, Dynamic-LLaVA reduces the $\sim$50\% computation consumption under decoding without KV cache, while saving $\sim$50\% GPU memory overhead when decoding with KV cache, due to the vision-language context sparsification. Extensive experiments also demonstrate that Dynamic-LLaVA achieves efficient inference for MLLMs with negligible understanding and generation ability degradation or even performance gains compared to the full-context inference baselines. Code is available at https://github.com/Osilly/dynamic_llava .
MoDification: Mixture of Depths Made Easy
Zhang, Chen, Zhong, Meizhi, Wang, Qimeng, Lu, Xuantao, Ye, Zheyu, Lu, Chengqiang, Gao, Yan, Hu, Yao, Chen, Kehai, Zhang, Min, Song, Dawei
Long-context efficiency has recently become a trending topic in serving large language models (LLMs). And mixture of depths (MoD) is proposed as a perfect fit to bring down both latency and memory. In this paper, however, we discover that MoD can barely transform existing LLMs without costly training over an extensive number of tokens. To enable the transformations from any LLMs to MoD ones, we showcase top-k operator in MoD should be promoted to threshold-p operator, and refinement to architecture and data should also be crafted along. All these designs form our method termed MoDification. Through a comprehensive set of experiments covering model scales from 3B to 70B, we exhibit MoDification strikes an excellent balance between efficiency and effectiveness. MoDification can achieve up to ~1.2x speedup in latency and ~1.8x reduction in memory compared to original LLMs especially in long-context applications.
DetectBench: Can Large Language Model Detect and Piece Together Implicit Evidence?
Gu, Zhouhong, Zhang, Lin, Zhu, Xiaoxuan, Chen, Jiangjie, Huang, Wenhao, Zhang, Yikai, Wang, Shusen, Ye, Zheyu, Gao, Yan, Feng, Hongwei, Xiao, Yanghua
Detecting evidence within the context is a key step in the process of reasoning task. Evaluating and enhancing the capabilities of LLMs in evidence detection will strengthen context-based reasoning performance. This paper proposes a benchmark called DetectBench for verifying the ability to detect and piece together implicit evidence within a long context. DetectBench contains 3,928 multiple-choice questions, with an average of 994 tokens per question. Each question contains an average of 4.55 pieces of implicit evidence, and solving the problem typically requires 7.62 logical jumps to find the correct answer. To enhance the performance of LLMs in evidence detection, this paper proposes Detective Reasoning Prompt and Finetune. Experiments demonstrate that the existing LLMs' abilities to detect evidence in long contexts are far inferior to humans. However, the Detective Reasoning Prompt effectively enhances the capability of powerful LLMs in evidence detection, while the Finetuning method shows significant effects in enhancing the performance of weaker LLMs. Moreover, when the abilities of LLMs in evidence detection are improved, their final reasoning performance is also enhanced accordingly.
AgentGroupChat: An Interactive Group Chat Simulacra For Better Eliciting Emergent Behavior
Gu, Zhouhong, Zhu, Xiaoxuan, Guo, Haoran, Zhang, Lin, Cai, Yin, Shen, Hao, Chen, Jiangjie, Ye, Zheyu, Dai, Yifei, Gao, Yan, Hu, Yao, Feng, Hongwei, Xiao, Yanghua
Language significantly influences the formation and evolution of Human emergent behavior, which is crucial in understanding collective intelligence within human societies. Considering that the study of how language affects human behavior needs to put it into the dynamic scenarios in which it is used, we introduce AgentGroupChat in this paper, a simulation that delves into the complex role of language in shaping collective behavior through interactive debate scenarios. Central to this simulation are characters engaging in dynamic conversation interactions. To enable simulation, we introduce the Verbal Strategist Agent, utilizing large language models to enhance interaction strategies by incorporating elements of persona and action. We set four narrative scenarios based on AgentGroupChat to demonstrate the simulation's capacity to mimic complex language use in group dynamics. Evaluations focus on aligning agent behaviors with human expectations and the emergence of collective behaviors within the simulation. Results reveal that emergent behaviors materialize from a confluence of factors: a conducive environment for extensive information exchange, characters with diverse traits, high linguistic comprehension, and strategic adaptability. During discussions on ``the impact of AI on humanity'' in AgentGroupChat simulation, philosophers commonly agreed that ``AI could enhance societal welfare with judicious limitations'' and even come to a conclusion that ``the essence of true intelligence encompasses understanding the necessity to constrain self abilities''. Additionally, in the competitive domain of casting for primary roles in films in AgentGroupChat, certain actors were ready to reduce their remuneration or accept lesser roles, motivated by their deep-seated desire to contribute to the project.
Towards the Law of Capacity Gap in Distilling Language Models
Zhang, Chen, Song, Dawei, Ye, Zheyu, Gao, Yan
Language model (LM) distillation is a trending area that aims to distil the knowledge resided in a large teacher LM to a small student one. While various methods have been proposed to push the distillation to its limits, it is still a pain distilling LMs when a large capacity gap is exhibited between the teacher and the student LMs. The pain is mainly resulted by the curse of capacity gap, which describes that a larger teacher LM cannot always lead to a better student LM than one distilled from a smaller teacher LM due to the affect of capacity gap increment. That is, there is likely an optimal point yielding the best student LM along the scaling course of the teacher LM. Even worse, the curse of capacity gap can be only partly yet not fully lifted as indicated in previous studies. However, the tale is not ever one-sided. Although a larger teacher LM has better performance than a smaller teacher LM, it is much more resource-demanding especially in the context of recent large LMs (LLMs). Consequently, instead of sticking to lifting the curse, leaving the curse as is should be arguably fine. Even better, in this paper, we reveal that the optimal capacity gap is almost consistent across different student scales and architectures, fortunately turning the curse into the law of capacity gap. The law later guides us to distil a 3B student LM (termed MiniMA) from a 7B teacher LM (adapted LLaMA2-7B). MiniMA is demonstrated to yield a new compute-performance pareto frontier among existing 3B LMs on commonly used benchmarks, and its instruction-tuned version (termed MiniChat) outperforms a wide range of 3B competitors in GPT4 evaluation and could even compete with several 7B chat models.