Goto

Collaborating Authors

 Ye, Yinyu


On a Randomized Multi-Block ADMM for Solving Selected Machine Learning Problems

arXiv.org Machine Learning

The Alternating Direction Method of Multipliers (ADMM) has now days gained tremendous attentions for solving large-scale machine learning and signal processing problems due to the relative simplicity. However, the two-block structure of the classical ADMM still limits the size of the real problems being solved. When one forces a more-than-two-block structure by variable-splitting, the convergence speed slows down greatly as observed in practice. Recently, a randomly assembled cyclic multi-block ADMM (RAC-MBADMM) was developed by the authors for solving general convex and nonconvex quadratic optimization problems where the number of blocks can go greater than two so that each sub-problem has a smaller size and can be solved much more efficiently. In this paper, we apply this method to solving few selected machine learning problems related to convex quadratic optimization, such as Linear Regression, LASSO, Elastic-Net, and SVM. We prove that the algorithm would converge in expectation linearly under the standard statistical data assumptions. We use our general-purpose solver to conduct multiple numerical tests, solving both synthetic and large-scale bench-mark problems. Our results show that RAC-MBADMM could significantly outperform, in both solution time and quality, other optimization algorithms/codes for solving these machine learning problems, and match up the performance of the best tailored methods such as Glmnet or LIBSVM. In certain problem regions RAC-MBADMM even achieves a superior performance than that of the tailored methods.


Interior-point Methods Strike Back: Solving the Wasserstein Barycenter Problem

arXiv.org Machine Learning

To compare, summarize, and combine probability measures defined on a space is a fundamental task in statistics and machine learning. Given support points of probability measures in a metric space and a transportation cost function (e.g. the Euclidean distance), Wasserstein distance defines a distance between two measures as the minimal transportation cost between them. This notion of distance leads to a host of important applications, including text classification [28], clustering [23, 24, 14], unsupervised learning [21], semi-supervised learning [44], statistics [36, 37, 46, 19], and others [5, 39, 45]. Given a set of measures in the same space, the 2-Wasserstein barycenter is defined as the measure minimizing the sum of squared 2-Wasserstein distances to all measures in the set. For example, if a set of images (with common structure but varying noise) are modeled as probability measures, then the Wasserstein barycenter is a mixture of the images that share this common structure.


Near-Optimal Time and Sample Complexities for Solving Markov Decision Processes with a Generative Model

Neural Information Processing Systems

In this paper we consider the problem of computing an $\epsilon$-optimal policy of a discounted Markov Decision Process (DMDP) provided we can only access its transition function through a generative sampling model that given any state-action pair samples from the transition function in $O(1)$ time. Given such a DMDP with states $\states$, actions $\actions$, discount factor $\gamma\in(0,1)$, and rewards in range $[0, 1]$ we provide an algorithm which computes an $\epsilon$-optimal policy with probability $1 - \delta$ where {\it both} the run time spent and number of sample taken is upper bounded by \[ O\left[\frac{|\cS||\cA|}{(1-\gamma)^3 \epsilon^2} \log \left(\frac{|\cS||\cA|}{(1-\gamma)\delta \epsilon} \right) \log\left(\frac{1}{(1-\gamma)\epsilon}\right)\right] ~. \] For fixed values of $\epsilon$, this improves upon the previous best known bounds by a factor of $(1 - \gamma)^{-1}$ and matches the sample complexity lower bounds proved in \cite{azar2013minimax} up to logarithmic factors. We also extend our method to computing $\epsilon$-optimal policies for finite-horizon MDP with a generative model and provide a nearly matching sample complexity lower bound.


Learning in Games with Lossy Feedback

Neural Information Processing Systems

We consider a game-theoretical multi-agent learning problem where the feedback information can be lost during the learning process and rewards are given by a broad class of games known as variationally stable games. We propose a simple variant of the classical online gradient descent algorithm, called reweighted online gradient descent (ROGD) and show that in variationally stable games, if each agent adopts ROGD, then almost sure convergence to the set of Nash equilibria is guaranteed, even when the feedback loss is asynchronous and arbitrarily corrrelated among agents. We then extend the framework to deal with unknown feedback loss probabilities by using an estimator (constructed from past data) in its replacement. Finally, we further extend the framework to accomodate both asynchronous loss and stochastic rewards and establish that multi-agent ROGD learning still converges to the set of Nash equilibria in such settings. Together, these results contribute to the broad lanscape of multi-agent online learning by significantly relaxing the feedback information that is required to achieve desirable outcomes.


Near-Optimal Time and Sample Complexities for Solving Markov Decision Processes with a Generative Model

Neural Information Processing Systems

In this paper we consider the problem of computing an $\epsilon$-optimal policy of a discounted Markov Decision Process (DMDP) provided we can only access its transition function through a generative sampling model that given any state-action pair samples from the transition function in $O(1)$ time. Given such a DMDP with states $\states$, actions $\actions$, discount factor $\gamma\in(0,1)$, and rewards in range $[0, 1]$ we provide an algorithm which computes an $\epsilon$-optimal policy with probability $1 - \delta$ where {\it both} the run time spent and number of sample taken is upper bounded by \[ O\left[\frac{|\cS||\cA|}{(1-\gamma)^3 \epsilon^2} \log \left(\frac{|\cS||\cA|}{(1-\gamma)\delta \epsilon} \right) \log\left(\frac{1}{(1-\gamma)\epsilon}\right)\right] ~. \] For fixed values of $\epsilon$, this improves upon the previous best known bounds by a factor of $(1 - \gamma)^{-1}$ and matches the sample complexity lower bounds proved in \cite{azar2013minimax} up to logarithmic factors. We also extend our method to computing $\epsilon$-optimal policies for finite-horizon MDP with a generative model and provide a nearly matching sample complexity lower bound.


Learning in Games with Lossy Feedback

Neural Information Processing Systems

We consider a game-theoretical multi-agent learning problem where the feedback information can be lost during the learning process and rewards are given by a broad class of games known as variationally stable games. We propose a simple variant of the classical online gradient descent algorithm, called reweighted online gradient descent (ROGD) and show that in variationally stable games, if each agent adopts ROGD, then almost sure convergence to the set of Nash equilibria is guaranteed, even when the feedback loss is asynchronous and arbitrarily corrrelated among agents. We then extend the framework to deal with unknown feedback loss probabilities by using an estimator (constructed from past data) in its replacement. Finally, we further extend the framework to accomodate both asynchronous loss and stochastic rewards and establish that multi-agent ROGD learning still converges to the set of Nash equilibria in such settings. Together, these results contribute to the broad lanscape of multi-agent online learning by significantly relaxing the feedback information that is required to achieve desirable outcomes.


Statistical ranking and combinatorial Hodge theory

arXiv.org Machine Learning

We propose a number of techniques for obtaining a global ranking from data that may be incomplete and imbalanced -- characteristics almost universal to modern datasets coming from e-commerce and internet applications. We are primarily interested in score or rating-based cardinal data. From raw ranking data, we construct pairwise rankings, represented as edge flows on an appropriate graph. Our statistical ranking method uses the graph Helmholtzian, the graph theoretic analogue of the Helmholtz operator or vector Laplacian, in much the same way the graph Laplacian is an analogue of the Laplace operator or scalar Laplacian. We study the graph Helmholtzian using combinatorial Hodge theory: we show that every edge flow representing pairwise ranking can be resolved into two orthogonal components, a gradient flow that represents the L2-optimal global ranking and a divergence-free flow (cyclic) that measures the validity of the global ranking obtained -- if this is large, then the data does not have a meaningful global ranking. This divergence-free flow can be further decomposed orthogonally into a curl flow (locally cyclic) and a harmonic flow (locally acyclic but globally cyclic); these provides information on whether inconsistency arises locally or globally. An obvious advantage over the NP-hard Kemeny optimization is that discrete Hodge decomposition may be computed via a linear least squares regression. We also investigated the L1-projection of edge flows, showing that this is dual to correlation maximization over bounded divergence-free flows, and the L1-approximate sparse cyclic ranking, showing that this is dual to correlation maximization over bounded curl-free flows. We discuss relations with Kemeny optimization, Borda count, and Kendall-Smith consistency index from social choice theory and statistics.