Goto

Collaborating Authors

 Ye, Yinyu


Provable and Practical Online Learning Rate Adaptation with Hypergradient Descent

arXiv.org Artificial Intelligence

This paper investigates the convergence properties of the hypergradient descent method (HDM), a 25-year-old heuristic originally proposed for adaptive stepsize selection in stochastic first-order methods. We provide the first rigorous convergence analysis of HDM using the online learning framework of [Gao24] and apply this analysis to develop new state-of-the-art adaptive gradient methods with empirical and theoretical support. Notably, HDM automatically identifies the optimal stepsize for the local optimization landscape and achieves local superlinear convergence. Our analysis explains the instability of HDM reported in the literature and proposes efficient strategies to address it. We also develop two HDM variants with heavy-ball and Nesterov momentum. Experiments on deterministic convex problems show HDM with heavy-ball momentum (HDM-HB) exhibits robust performance and significantly outperforms other adaptive first-order methods. Moreover, HDM-HB often matches the performance of L-BFGS, an efficient and practical quasi-Newton method, using less memory and cheaper iterations.


Wait-Less Offline Tuning and Re-solving for Online Decision Making

arXiv.org Machine Learning

Online linear programming (OLP) has found broad applications in revenue management and resource allocation. State-of-the-art OLP algorithms achieve low regret by repeatedly solving linear programming (LP) subproblems that incorporate updated resource information. However, LP-based methods are computationally expensive and often inefficient for large-scale applications. In contrast, recent first-order OLP algorithms are more computationally efficient but typically suffer from worse regret guarantees. To address these shortcomings, we propose a new algorithm that combines the strengths of LP-based and first-order OLP methods. The algorithm re-solves the LP subproblems periodically at a predefined frequency $f$ and uses the latest dual prices to guide online decision-making. In addition, a first-order method runs in parallel during each interval between LP re-solves, smoothing resource consumption. Our algorithm achieves $\mathscr{O}(\log (T/f) + \sqrt{f})$ regret, delivering a "wait-less" online decision-making process that balances the computational efficiency of first-order methods and the superior regret guarantee of LP-based methods.


Beyond $\mathcal{O}(\sqrt{T})$ Regret: Decoupling Learning and Decision-making in Online Linear Programming

arXiv.org Machine Learning

Online linear programming plays an important role in both revenue management and resource allocation, and recent research has focused on developing efficient first-order online learning algorithms. Despite the empirical success of first-order methods, they typically achieve a regret no better than $\mathcal{O} ( \sqrt{T} )$, which is suboptimal compared to the $\mathcal{O} (\log T)$ bound guaranteed by the state-of-the-art linear programming (LP)-based online algorithms. This paper establishes a general framework that improves upon the $\mathcal{O} ( \sqrt{T} )$ result when the LP dual problem exhibits certain error bound conditions. For the first time, we show that first-order learning algorithms achieve $o( \sqrt{T} )$ regret in the continuous support setting and $\mathcal{O} (\log T)$ regret in the finite support setting beyond the non-degeneracy assumption. Our results significantly improve the state-of-the-art regret results and provide new insights for sequential decision-making.


Gradient Methods with Online Scaling

arXiv.org Artificial Intelligence

We introduce a framework to accelerate the convergence of gradient-based methods with online learning. The framework learns to scale the gradient at each iteration through an online learning algorithm and provably accelerates gradient-based methods asymptotically. In contrast with previous literature, where convergence is established based on worst-case analysis, our framework provides a strong convergence guarantee with respect to the optimal scaling matrix for the iteration trajectory. For smooth strongly convex optimization, our results provide an $O(\kappa^\star \log(1/\varepsilon)$) complexity result, where $\kappa^\star$ is the condition number achievable by the optimal preconditioner, improving on the previous $O(\sqrt{n}\kappa^\star \log(1/\varepsilon))$ result. In particular, a variant of our method achieves superlinear convergence on convex quadratics. For smooth convex optimization, we show for the first time that the widely-used hypergradient descent heuristic improves on the convergence of gradient descent.


Adam-mini: Use Fewer Learning Rates To Gain More

arXiv.org Artificial Intelligence

We propose Adam-mini, an optimizer that achieves on-par or better performance than AdamW with 45% to 50% less memory footprint. Adam-mini reduces memory by cutting down the learning rate resources in Adam (i.e., $1/\sqrt{v}$). We find that $\geq$ 90% of these learning rates in $v$ could be harmlessly removed if we (1) carefully partition the parameters into blocks following our proposed principle on Hessian structure; (2) assign a single but good learning rate to each parameter block. We further find that, for each of these parameter blocks, there exists a single high-quality learning rate that can outperform Adam, provided that sufficient resources are available to search it out. We then provide one cost-effective way to find good learning rates and propose Adam-mini. Empirically, we verify that Adam-mini performs on par or better than AdamW on various language models sized from 125M to 7B for pre-training, supervised fine-tuning, and RLHF. The reduced memory footprint of Adam-mini also alleviates communication overheads among GPUs and CPUs, thereby increasing throughput. For instance, Adam-mini achieves 49.6% higher throughput than AdamW when pre-training Llama2-7B on $2\times$ A800-80GB GPUs, which saves 33% wall-clock time for pre-training.


Achieving $\tilde{O}(1/\epsilon)$ Sample Complexity for Constrained Markov Decision Process

arXiv.org Artificial Intelligence

We consider the reinforcement learning problem for the constrained Markov decision process (CMDP), which plays a central role in satisfying safety or resource constraints in sequential learning and decision-making. In this problem, we are given finite resources and a MDP with unknown transition probabilities. At each stage, we take an action, collecting a reward and consuming some resources, all assumed to be unknown and need to be learned over time. In this work, we take the first step towards deriving optimal problem-dependent guarantees for the CMDP problems. We derive a logarithmic regret bound, which translates into a $O(\frac{1}{\Delta\cdot\eps}\cdot\log^2(1/\eps))$ sample complexity bound, with $\Delta$ being a problem-dependent parameter, yet independent of $\eps$. Our sample complexity bound improves upon the state-of-art $O(1/\eps^2)$ sample complexity for CMDP problems established in the previous literature, in terms of the dependency on $\eps$. To achieve this advance, we develop a new framework for analyzing CMDP problems. To be specific, our algorithm operates in the primal space and we resolve the primal LP for the CMDP problem at each period in an online manner, with \textit{adaptive} remaining resource capacities. The key elements of our algorithm are: i) a characterization of the instance hardness via LP basis, ii) an eliminating procedure that identifies one optimal basis of the primal LP, and; iii) a resolving procedure that is adaptive to the remaining resources and sticks to the characterized optimal basis.


Diffusion Model for Data-Driven Black-Box Optimization

arXiv.org Artificial Intelligence

Generative AI has redefined artificial intelligence, enabling the creation of innovative content and customized solutions that drive business practices into a new era of efficiency and creativity. In this paper, we focus on diffusion models, a powerful generative AI technology, and investigate their potential for black-box optimization over complex structured variables. Consider the practical scenario where one wants to optimize some structured design in a high-dimensional space, based on massive unlabeled data (representing design variables) and a small labeled dataset. We study two practical types of labels: 1) noisy measurements of a real-valued reward function and 2) human preference based on pairwise comparisons. The goal is to generate new designs that are near-optimal and preserve the designed latent structures. Our proposed method reformulates the design optimization problem into a conditional sampling problem, which allows us to leverage the power of diffusion models for modeling complex distributions. In particular, we propose a reward-directed conditional diffusion model, to be trained on the mixed data, for sampling a near-optimal solution conditioned on high predicted rewards. Theoretically, we establish sub-optimality error bounds for the generated designs. The sub-optimality gap nearly matches the optimal guarantee in off-policy bandits, demonstrating the efficiency of reward-directed diffusion models for black-box optimization. Moreover, when the data admits a low-dimensional latent subspace structure, our model efficiently generates high-fidelity designs that closely respect the latent structure. We provide empirical experiments validating our model in decision-making and content-creation tasks.


TriAug: Out-of-Distribution Detection for Robust Classification of Imbalanced Breast Lesion in Ultrasound

arXiv.org Artificial Intelligence

Different diseases, such as histological subtypes of breast lesions, have severely varying incidence rates. Even trained with substantial amount of in-distribution (ID) data, models often encounter out-of-distribution (OOD) samples belonging to unseen classes in clinical reality. To address this, we propose a novel framework built upon a long-tailed OOD detection task for breast ultrasound images. It is equipped with a triplet state augmentation (TriAug) which improves ID classification accuracy while maintaining a promising OOD detection performance. Meanwhile, we designed a balanced sphere loss to handle the class imbalanced problem.


Decoupling Learning and Decision-Making: Breaking the $\mathcal{O}(\sqrt{T})$ Barrier in Online Resource Allocation with First-Order Methods

arXiv.org Artificial Intelligence

Online linear programming plays an important role in both revenue management and resource allocation, and recent research has focused on developing efficient first-order online learning algorithms. Despite the empirical success of first-order methods, they typically achieve a regret no better than $\mathcal{O}(\sqrt{T})$, which is suboptimal compared to the $\mathcal{O}(\log T)$ bound guaranteed by the state-of-the-art linear programming (LP)-based online algorithms. This paper establishes several important facts about online linear programming, which unveils the challenge for first-order-method-based online algorithms to achieve beyond $\mathcal{O}(\sqrt{T})$ regret. To address the challenge, we introduce a new algorithmic framework that decouples learning from decision-making. More importantly, for the first time, we show that first-order methods can attain regret $\mathcal{O}(T^{1/3})$ with this new framework. Lastly, we conduct numerical experiments to validate our theoretical findings.


Efficient Reinforcement Learning with Impaired Observability: Learning to Act with Delayed and Missing State Observations

arXiv.org Artificial Intelligence

In real-world reinforcement learning (RL) systems, various forms of {\it impaired observability} can complicate matters. These situations arise when an agent is unable to observe the most recent state of the system due to latency or lossy channels, yet the agent must still make real-time decisions. This paper introduces a theoretical investigation into efficient RL in control systems where agents must act with delayed and missing state observations. We present algorithms and establish near-optimal regret upper and lower bounds, of the form $\tilde{\mathcal{O}}(\sqrt{{\rm poly}(H) SAK})$, for RL in the delayed and missing observation settings. Here $S$ and $A$ are the sizes of state and action spaces, $H$ is the time horizon and $K$ is the number of episodes. Despite impaired observability posing significant challenges to the policy class and planning, our results demonstrate that learning remains efficient, with the regret bound optimally depending on the state-action size of the original system. Additionally, we provide a characterization of the performance of the optimal policy under impaired observability, comparing it to the optimal value obtained with full observability. Numerical results are provided to support our theory.