Ye, Xiuzi
Semi-Supervised Dictionary Learning via Structural Sparse Preserving
Wang, Di (Wenzhou University) | Zhang, Xiaoqin (Wenzhou University) | Fan, Mingyu (Wenzhou University) | Ye, Xiuzi (Wenzhou University)
While recent techniques for discriminative dictionary learning have attained promising results on the classification tasks, their performance is highly dependent on the number of labeled samples available for training. However, labeling samples is expensive and time consuming due to the significant human effort involved. In this paper, we present a novel semi- supervised dictionary learning method which utilizes the structural sparse relationships between the labeled and unlabeled samples. Specifically, by connecting the sparse reconstruction coefficients on both the original samples and dictionary, the unlabeled samples can be automatically grouped to the different labeled samples, and the grouped samples share a small number of atoms in the dictionary via mixed l2p- norm regularization. This makes the learned dictionary more representative and discriminative since the shared atoms are learned by using the labeled and unlabeled samples potentially from the same class. Minimizing the derived objective function is a challenging task because it is non-convex and highly non-smooth. We propose an efficient optimization algorithm to solve the problem based on the block coordinate descent method. Moreover, we have a rigorous proof of the convergence of the algorithm. Extensive experiments are presented to show the superior performance of our method in classification applications.
Multi-Modality Tracker Aggregation: From Generative to Discriminative
Zhang, Xiaoqin (Wenzhou University) | Li, Wei (Taobao Software Company Limited) | Fan, Mingyu (Wenzhou University) | Wang, Di (Wenzhou University) | Ye, Xiuzi (Wenzhou University)
Visual tracking is an important research topic in computer vision community. Although there are numerous tracking algorithms in the literature, no one performs better than the others under all circumstances, and the best algorithm for a particular dataset may not be known a priori. This motivates a fundamental problem-the necessity of an ensemble learning of different tracking algorithms to overcome their drawbacks and to increase the generalization ability. This paper proposes a multi-modality ranking aggregation framework for fusion of multiple tracking algorithms. In our work, each tracker is viewed as a `ranker' which outputs a rank list of the candidate image patches based on its own appearance model in a particular modality. Then the proposed algorithm aggregates the rankings of different rankers to produce a joint ranking. Moreover, the level of expertise for each `ranker' based on the historical ranking results is also effectively used in our model. The proposed model not only provides a general framework for fusing multiple tracking algorithms on multiple modalities, but also provides a natural way to combine the advantages of the generative model based trackers and the the discriminative model based trackers. It does not need to directly compare the output results obtained by different trackers, and such a comparison is usually heuristic. Extensive experiments demonstrate the effectiveness of our work.