Goto

Collaborating Authors

 Ye, Weirui


Video2Policy: Scaling up Manipulation Tasks in Simulation through Internet Videos

arXiv.org Artificial Intelligence

Simulation offers a promising approach for cheaply scaling training data for generalist policies. To scalably generate data from diverse and realistic tasks, existing algorithms either rely on large language models (LLMs) that may hallucinate tasks not interesting for robotics; or digital twins, which require careful real-to-sim alignment and are hard to scale. To address these challenges, we introduce Video2Policy, a novel framework that leverages internet RGB videos to reconstruct tasks based on everyday human behavior. Our approach comprises two phases: (1) task generation in simulation from videos; and (2) reinforcement learning utilizing in-context LLM-generated reward functions iteratively. We demonstrate the efficacy of Video2Policy by reconstructing over 100 videos from the Something-Something-v2 (SSv2) dataset, which depicts diverse and complex human behaviors on 9 different tasks. Our method can successfully train RL policies on such tasks, including complex and challenging tasks such as throwing. Finally, we show that the generated simulation data can be scaled up for training a general policy, and it can be transferred back to the real robot in a Real2Sim2Real way.


Learning Manipulation Skills through Robot Chain-of-Thought with Sparse Failure Guidance

arXiv.org Artificial Intelligence

Defining reward functions for skill learning has been a long-standing challenge in robotics. Recently, vision-language models (VLMs) have shown promise in defining reward signals for teaching robots manipulation skills. However, existing works often provide reward guidance that is too coarse, leading to inefficient learning processes. In this paper, we address this issue by implementing more fine-grained reward guidance. We decompose tasks into simpler sub-tasks, using this decomposition to offer more informative reward guidance with VLMs. We also propose a VLM-based self imitation learning process to speed up learning. Empirical evidence demonstrates that our algorithm consistently outperforms baselines such as CLIP, LIV, and RoboCLIP. Specifically, our algorithm achieves a $5.4 \times$ higher average success rate compared to the best baseline, RoboCLIP, across a series of manipulation tasks.


EfficientZero V2: Mastering Discrete and Continuous Control with Limited Data

arXiv.org Artificial Intelligence

Sample efficiency remains a crucial challenge in applying Reinforcement Learning (RL) to real-world tasks. While recent algorithms have made significant strides in improving sample efficiency, none have achieved consistently superior performance across diverse domains. In this paper, we introduce EfficientZero V2, a general framework designed for sample-efficient RL algorithms. We have expanded the performance of EfficientZero to multiple domains, encompassing both continuous and discrete actions, as well as visual and low-dimensional inputs. With a series of improvements we propose, EfficientZero V2 outperforms the current state-of-the-art (SOTA) by a significant margin in diverse tasks under the limited data setting. EfficientZero V2 exhibits a notable advancement over the prevailing general algorithm, DreamerV3, achieving superior outcomes in 50 of 66 evaluated tasks across diverse benchmarks, such as Atari 100k, Proprio Control, and Vision Control.


Foundation Reinforcement Learning: towards Embodied Generalist Agents with Foundation Prior Assistance

arXiv.org Artificial Intelligence

Recently, people have shown that large-scale pre-training from internet-scale data is the key to building generalist models, as witnessed in NLP. To build embodied generalist agents, we and many other researchers hypothesize that such foundation prior is also an indispensable component. However, it is unclear what is the proper concrete form to represent those embodied foundation priors and how they should be used in the downstream task. In this paper, we propose an intuitive and effective set of embodied priors that consist of foundation policy, value, and success reward. The proposed priors are based on the goal-conditioned MDP. To verify their effectiveness, we instantiate an actor-critic method assisted by the priors, called Foundation Actor-Critic (FAC). We name our framework as Foundation Reinforcement Learning (FRL), since it completely relies on embodied foundation priors to explore, learn and reinforce. The benefits of FRL are threefold. (1) Sample efficient. With foundation priors, FAC learns significantly faster than traditional RL. Our evaluation on the Meta-World has proved that FAC can achieve 100% success rates for 7/8 tasks under less than 200k frames, which outperforms the baseline method with careful manual-designed rewards under 1M frames. (2) Robust to noisy priors. Our method tolerates the unavoidable noise in embodied foundation models. We show that FAC works well even under heavy noise or quantization errors. (3) Minimal human intervention: FAC completely learns from the foundation priors, without the need of human-specified dense reward, or providing teleoperated demos. Thus, FAC can be easily scaled up. We believe our FRL framework could enable the future robot to autonomously explore and learn without human intervention in the physical world. In summary, our proposed FRL is a novel and powerful learning paradigm, towards achieving embodied generalist agents.


Real-time scheduling of renewable power systems through planning-based reinforcement learning

arXiv.org Artificial Intelligence

These authors contributed equally to this work. Abstract The growing renewable energy sources have posed significant challenges to traditional power scheduling. It is difficult for operators to obtain accurate day-ahead forecasts of renewable generation, thereby requiring the future scheduling system to make real-time scheduling decisions aligning with ultra-short-term forecasts. Restricted by the computation speed, traditional optimization-based methods can not solve this problem. Recent developments in reinforcement learning (RL) have demonstrated the potential to solve this challenge. However, the existing RL methods are inadequate in terms of constraint complexity, algorithm performance, and environment fidelity. The proposed approach enables planning and finer time resolution adjustments of power generators, including unit commitment and economic dispatch, thus increasing the grid's ability to admit more renewable energy. The well-trained scheduling agent significantly reduces renewable curtailment and load shedding, which are issues arising from traditional scheduling's reliance on inaccurate day-ahead forecasts. High-frequency control decisions exploit the existing units' flexibility, reducing the power grid's dependence on hardware transformations and saving investment and operating costs, as demonstrated in experimental results. This research exhibits the potential of reinforcement learning in promoting low-carbon and intelligent power systems and represents a solid step toward sustainable electricity generation. Climate change and carbon neutrality have garnered widespread global attention. The significant amount of carbon emissions during electricity production underscores the importance of achieving low-carbon electricity production as a solution to these pressing challenges. In recent years, wind and solar energy have emerged as promising sources of sustainable electricity. However, the fluctuation patterns of these sources are highly variable, making it challenging to accurately predict their power generation capacity over the long term. This presents a major challenge for existing power scheduling systems that rely on reliable long-term forecasts and day-ahead calculation, potentially leading to suboptimal or infeasible solutions, including renewable curtailments and blackouts [1, 2]. Traditionally, power system operators perform the day-ahead scheduling (DAS) program to calculate power generation schedules [3].


Mastering Atari Games with Limited Data

arXiv.org Artificial Intelligence

Reinforcement learning has achieved great success in many applications. However, sample efficiency remains a key challenge, with prominent methods requiring millions (or even billions) of environment steps to train. Recently, there has been significant progress in sample efficient image-based RL algorithms; however, consistent human-level performance on the Atari game benchmark remains an elusive goal. We propose a sample efficient model-based visual RL algorithm built on MuZero, which we name EfficientZero. Our method achieves 194.3% mean human performance and 109.0% median performance on the Atari 100k benchmark with only two hours of real-time game experience and outperforms the state SAC in some tasks on the DMControl 100k benchmark. This is the first time an algorithm achieves super-human performance on Atari games with such little data. EfficientZero's performance is also close to DQN's performance at 200 million frames while we consume 500 times less data. EfficientZero's low sample complexity and high performance can bring RL closer to real-world applicability. We implement our algorithm in an easy-to-understand manner and it is available at https://github.com/YeWR/EfficientZero. We hope it will accelerate the research of MCTS-based RL algorithms in the wider community.