Ye, Seonghyeon
Efficiently Enhancing Zero-Shot Performance of Instruction Following Model via Retrieval of Soft Prompt
Ye, Seonghyeon, Jang, Joel, Kim, Doyoung, Jo, Yongrae, Seo, Minjoon
Enhancing the zero-shot performance of instruction-following models requires heavy computation, either by scaling the total number of training datasets or the model size. In this work, we explore how retrieval of soft prompts obtained through prompt tuning can efficiently assist hard prompts in zero-shot task generalization. Specifically, we train soft prompt embeddings for each prompt through prompt tuning, store the samples of the training instances mapped with the prompt embeddings, and retrieve the corresponding prompt embedding of the training instance closest to the query instance during inference. While only adding 0.007% additional parameters, retrieval of soft prompt enhances the performance of T0 on unseen tasks by outperforming it on 10 out of 11 datasets as well as improving the mean accuracy of T0 on BIG-bench benchmark by 2.39% points. Also, we report an interesting finding that retrieving source embeddings trained on similar answer choice formats is more important than those on similar task types.
The CoT Collection: Improving Zero-shot and Few-shot Learning of Language Models via Chain-of-Thought Fine-Tuning
Kim, Seungone, Joo, Se June, Kim, Doyoung, Jang, Joel, Ye, Seonghyeon, Shin, Jamin, Seo, Minjoon
Language models (LMs) with less than 100B parameters are known to perform poorly on chain-of-thought (CoT) reasoning in contrast to large LMs when solving unseen tasks. In this work, we aim to equip smaller LMs with the step-by-step reasoning capability by instruction tuning with CoT rationales. In order to achieve this goal, we first introduce a new instruction-tuning dataset called the CoT Collection, which augments the existing Flan Collection (including only 9 CoT tasks) with additional 1.84 million rationales across 1,060 tasks. We show that CoT fine-tuning Flan-T5 (3B & 11B) with CoT Collection enables smaller LMs to have better CoT capabilities on unseen tasks. On the BIG-Bench-Hard (BBH) benchmark, we report an average improvement of +4.34% (Flan-T5 3B) and +2.60% (Flan-T5 11B), in terms of zero-shot task accuracy. Furthermore, we show that instruction tuning with CoT Collection allows LMs to possess stronger few-shot learning capabilities on 4 domain-specific tasks, resulting in an improvement of +2.24% (Flan-T5 3B) and +2.37% (Flan-T5 11B), even outperforming ChatGPT utilizing demonstrations until the max length by a +13.98% margin. Our code, the CoT Collection data, and model checkpoints are publicly available.
FLASK: Fine-grained Language Model Evaluation based on Alignment Skill Sets
Ye, Seonghyeon, Kim, Doyoung, Kim, Sungdong, Hwang, Hyeonbin, Kim, Seungone, Jo, Yongrae, Thorne, James, Kim, Juho, Seo, Minjoon
Evaluation of Large Language Models (LLMs) is challenging because instruction-following necessitates alignment with human values and the required set of skills varies depending on the instruction. However, previous studies have mainly focused on coarse-grained evaluation (i.e. overall preference-based evaluation), which limits interpretability since it does not consider the nature of user instructions that require instance-wise skill composition. In this paper, we introduce FLASK (Fine-grained Language Model Evaluation based on Alignment Skill Sets), a fine-grained evaluation protocol for both human-based and model-based evaluation which decomposes coarse-level scoring to a skill set-level scoring for each instruction. We experimentally observe that the fine-graininess of evaluation is crucial for attaining a holistic view of model performance and increasing the reliability of the evaluation. Using FLASK, we compare multiple open-source and proprietary LLMs and observe a high correlation between model-based and human-based evaluations. We publicly release the evaluation data and code implementation at https://github.com/kaistAI/FLASK.
Guess the Instruction! Flipped Learning Makes Language Models Stronger Zero-Shot Learners
Ye, Seonghyeon, Kim, Doyoung, Jang, Joel, Shin, Joongbo, Seo, Minjoon
Meta-training, which fine-tunes the language model (LM) on various downstream tasks by maximizing the likelihood of the target label given the task instruction and input instance, has improved the zero-shot task generalization performance. However, meta-trained LMs still struggle to generalize to challenging tasks containing novel labels unseen during meta-training. In this paper, we propose Flipped Learning, an alternative method of meta-training which trains the LM to generate the task instruction given the input instance and label. During inference, the LM trained with Flipped Learning, referred to as Flipped, selects the label option that is most likely to generate the task instruction. On 14 tasks of the BIG-bench benchmark, the 11B-sized Flipped outperforms zero-shot T0-11B and even a 16 times larger 3-shot GPT-3 (175B) on average by 8.4% and 9.7% points, respectively. Flipped gives particularly large improvements on tasks with unseen labels, outperforming T0-11B by up to +20% average F1 score. This indicates that the strong task generalization of Flipped comes from improved generalization to novel labels. We release our code at https://github.com/seonghyeonye/Flipped-Learning.
Improving Probability-based Prompt Selection Through Unified Evaluation and Analysis
Yang, Sohee, Kim, Jonghyeon, Jang, Joel, Ye, Seonghyeon, Lee, Hyunji, Seo, Minjoon
Large Language Models (LLMs) have demonstrated great capabilities in solving a wide range of tasks in a resource-efficient manner through prompting, which does not require task-specific training, but suffers from performance fluctuation when there are multiple prompt candidates. Previous works have introduced gradient-free probability-based prompt selection methods that aim to choose the optimal prompt among the candidates for a given task but fail to provide a comprehensive and fair comparison between each other. In this paper, we propose a unified framework to interpret and evaluate the existing probability-based prompt selection methods by performing extensive experiments on 13 common NLP tasks. We find that all existing methods can be unified into some variant of the method that maximizes the mutual information between the input and the corresponding model output (denoted as MI). Using the finding, we develop several variants of MI and increases the effectiveness of the best prompt selection method from 87.79% to 94.98%, measured as the ratio of the performance of the selected prompt to that of the optimal oracle prompt. Furthermore, we propose a novel calibration method called Calibration by Marginalization (CBM) that is orthogonal to existing methods and helps increase the prompt selection effectiveness of the best method by 99.44%. The code and datasets used in our work will be released at https://github.com/soheeyang/unified-prompt-selection.
TemporalWiki: A Lifelong Benchmark for Training and Evaluating Ever-Evolving Language Models
Jang, Joel, Ye, Seonghyeon, Lee, Changho, Yang, Sohee, Shin, Joongbo, Han, Janghoon, Kim, Gyeonghun, Seo, Minjoon
Language Models (LMs) become outdated as the world changes; they often fail to perform tasks requiring recent factual information which was absent or different during training, a phenomenon called temporal misalignment. This is especially a challenging problem because the research community still lacks a coherent dataset for assessing the adaptability of LMs to frequently-updated knowledge corpus such as Wikipedia. To this end, we introduce TemporalWiki, a lifelong benchmark for ever-evolving LMs that utilizes the difference between consecutive snapshots of English Wikipedia and English Wikidata for training and evaluation, respectively. The benchmark hence allows researchers to periodically track an LM's ability to retain previous knowledge and acquire updated/new knowledge at each point in time. We also find that training an LM on the diff data through continual learning methods achieves similar or better perplexity than on the entire snapshot in our benchmark with 12 times less computational cost, which verifies that factual knowledge in LMs can be safely updated with minimal training data via continual learning. The dataset and the code are available at https://github.com/joeljang/temporalwiki.
Exploring the Benefits of Training Expert Language Models over Instruction Tuning
Jang, Joel, Kim, Seungone, Ye, Seonghyeon, Kim, Doyoung, Logeswaran, Lajanugen, Lee, Moontae, Lee, Kyungjae, Seo, Minjoon
Recently, Language Models (LMs) instruction-tuned on multiple tasks, also known as multitask-prompted fine-tuning (MT), have shown the capability to generalize to unseen tasks. Previous work has shown that scaling the number of training tasks is the key component in making stronger MT LMs. In this work, we report an unexpected finding that an expert LM fine-tuned on just a single task can outperform an MT LM trained with 300+ different tasks on 11 different unseen datasets and on 13 datasets of the BIG-bench benchmark by a mean accuracy of 3.20% and 1.29%, respectively. This finding casts doubt on the previously held belief that simply scaling the number of tasks makes stronger MT LMs. Leveraging this finding, we further show that this distributed approach of training a separate expert LM per training task instead of a single MT LM for zero-shot inference possesses many benefits including (1) avoiding negative task transfer that often occurs during instruction tuning, (2) being able to continually learn new tasks without having to re-train on previous tasks to avoid catastrophic forgetting, and (3) showing compositional capabilities when merging individual experts together. The code is available at https://github.com/joeljang/ELM.