Ye, Miao
A New Segment Routing method with Swap Node Selection Strategy Based on Deep Reinforcement Learning for Software Defined Network
Ye, Miao, Zheng, Jihao, Jiang, Qiuxiang, Huang, Yuan, Wang, Ziheng, Wang, Yong
The existing segment routing (SR) methods need to determine the routing first and then use path segmentation approaches to select swap nodes to form a segment routing path (SRP). They require re-segmentation of the path when the routing changes. Furthermore, they do not consider the flow table issuance time, which cannot maximize the speed of issuance flow table. To address these issues, this paper establishes an optimization model that can simultaneously form routing strategies and path segmentation strategies for selecting the appropriate swap nodes to reduce flow table issuance time. It also designs an intelligent segment routing algorithm based on deep reinforcement learning (DRL-SR) to solve the proposed model. First, a traffic matrix is designed as the state space for the deep reinforcement learning agent; this matrix includes multiple QoS performance indicators, flow table issuance time overhead and SR label stack depth. Second, the action selection strategy and corresponding reward function are designed, where the agent selects the next node considering the routing; in addition, the action selection strategy whether the newly added node is selected as the swap node and the corresponding reward function are designed considering the time cost factor for the controller to issue the flow table to the swap node. Finally, a series of experiments and their results show that, compared with the existing methods, the designed segmented route optimization model and the intelligent solution algorithm (DRL-SR) can reduce the time overhead required to complete the segmented route establishment task while optimizing performance metrics such as throughput, delays and packet losses.
A Novel Spatiotemporal Correlation Anomaly Detection Method Based on Time-Frequency-Domain Feature Fusion and a Dynamic Graph Neural Network in Wireless Sensor Network
Ye, Miao, Jiang, Zhibang, Xue, Xingsi, Li, Xingwang, Wen, Peng, Wang, Yong
Attention-based transformers have played an important role in wireless sensor network (WSN) timing anomaly detection due to their ability to capture long-term dependencies. However, there are several issues that must be addressed, such as the fact that their ability to capture long-term dependencies is not completely reliable, their computational complexity levels are high, and the spatiotemporal features of WSN timing data are not sufficiently extracted for detecting the correlation anomalies of multinode WSN timing data. To address these limitations, this paper proposes a WSN anomaly detection method that integrates frequency-domain features with dynamic graph neural networks (GNN) under a designed self-encoder reconstruction framework. First, the discrete wavelet transform effectively decomposes trend and seasonal components of time series to solve the poor long-term reliability of transformers. Second, a frequency-domain attention mechanism is designed to make full use of the difference between the amplitude distributions of normal data and anomalous data in this domain. Finally, a multimodal fusion-based dynamic graph convolutional network (MFDGCN) is designed by combining an attention mechanism and a graph convolutional network (GCN) to adaptively extract spatial correlation features. A series of experiments conducted on public datasets and their results demonstrate that the anomaly detection method designed in this paper exhibits superior precision and recall than the existing methods do, with an F1 score of 93.5%, representing an improvement of 2.9% over that of the existing models.
DHRL-FNMR: An Intelligent Multicast Routing Approach Based on Deep Hierarchical Reinforcement Learning in SDN
Ye, Miao, Zhao, Chenwei, Xue, Xingsi, Li, Jinqiang, Hu, Hongwen, Yang, Yejin, Jiang, Qiuxiang
The optimal multicast tree problem in the Software-Defined Networking (SDN) multicast routing is an NP-hard combinatorial optimization problem. Although existing SDN intelligent solution methods, which are based on deep reinforcement learning, can dynamically adapt to complex network link state changes, these methods are plagued by problems such as redundant branches, large action space, and slow agent convergence. In this paper, an SDN intelligent multicast routing algorithm based on deep hierarchical reinforcement learning is proposed to circumvent the aforementioned problems. First, the multicast tree construction problem is decomposed into two sub-problems: the fork node selection problem and the construction of the optimal path from the fork node to the destination node. Second, based on the information characteristics of SDN global network perception, the multicast tree state matrix, link bandwidth matrix, link delay matrix, link packet loss rate matrix, and sub-goal matrix are designed as the state space of intrinsic and meta controllers. Then, in order to mitigate the excessive action space, our approach constructs different action spaces at the upper and lower levels. The meta-controller generates an action space using network nodes to select the fork node, and the intrinsic controller uses the adjacent edges of the current node as its action space, thus implementing four different action selection strategies in the construction of the multicast tree. To facilitate the intelligent agent in constructing the optimal multicast tree with greater speed, we developed alternative reward strategies that distinguish between single-step node actions and multi-step actions towards multiple destination nodes.
Intelligent multicast routing method based on multi-agent deep reinforcement learning in SDWN
Hu, Hongwen, Ye, Miao, Zhao, Chenwei, Jiang, Qiuxiang, Wang, Yong, Qiu, Hongbing, Deng, Xiaofang
Multicast communication technology is widely applied in wireless environments with a high device density. Traditional wireless network architectures have difficulty flexibly obtaining and maintaining global network state information and cannot quickly respond to network state changes, thus affecting the throughput, delay, and other QoS requirements of existing multicasting solutions. Therefore, this paper proposes a new multicast routing method based on multiagent deep reinforcement learning (MADRL-MR) in a software-defined wireless networking (SDWN) environment. First, SDWN technology is adopted to flexibly configure the network and obtain network state information in the form of traffic matrices representing global network links information, such as link bandwidth, delay, and packet loss rate. Second, the multicast routing problem is divided into multiple subproblems, which are solved through multiagent cooperation. To enable each agent to accurately understand the current network state and the status of multicast tree construction, the state space of each agent is designed based on the traffic and multicast tree status matrices, and the set of AP nodes in the network is used as the action space. A novel single-hop action strategy is designed, along with a reward function based on the four states that may occur during tree construction: progress, invalid, loop, and termination. Finally, a decentralized training approach is combined with transfer learning to enable each agent to quickly adapt to dynamic network changes and accelerate convergence. Simulation experiments show that MADRL-MR outperforms existing algorithms in terms of throughput, delay, packet loss rate, etc., and can establish more intelligent multicast routes.
An Intelligent SDWN Routing Algorithm Based on Network Situational Awareness and Deep Reinforcement Learning
Li, Jinqiang, Ye, Miao, Huang, Linqiang, Deng, Xiaofang, Qiu, Hongbing, Wang, Yong
Due to the highly dynamic changes in wireless network topologies, efficiently obtaining network status information and flexibly forwarding data to improve communication quality of service are important challenges. This article introduces an intelligent routing algorithm (DRL-PPONSA) based on proximal policy optimization deep reinforcement learning with network situational awareness under a software-defined wireless networking architecture. First, a specific data plane is designed for network topology construction and data forwarding. The control plane collects network traffic information, sends flow tables, and uses a GCN-GRU prediction mechanism to perceive future traffic change trends to achieve network situational awareness. Second, a DRL-based data forwarding mechanism is designed in the knowledge plane. The predicted network traffic matrix and topology information matrix are treated as the environment for DRL agents, while next-hop adjacent nodes are treated as executable actions. Accordingly, action selection strategies are designed for different network conditions to achieve more intelligent, flexible, and efficient routing control. The reward function is designed using network link information and various reward and penalty mechanisms. Additionally, importance sampling and gradient clipping techniques are employed during gradient updating to enhance convergence speed and stability. Experimental results show that DRL-PPONSA outperforms traditional routing methods in network throughput, delay, packet loss rate, and wireless node distance. Compared to value-function-based Dueling DQN routing, the convergence speed is significantly improved, and the convergence effect is more stable. Simultaneously, its consumption of hardware storage space is reduced, and efficient routing decisions can be made in real-time using the current network state information.
A Novel Self-Supervised Learning-Based Anomaly Node Detection Method Based on an Autoencoder in Wireless Sensor Networks
Ye, Miao, Zhang, Qinghao, Xue, Xingsi, Wang, Yong, Jiang, Qiuxiang, Qiu, Hongbing
Due to the issue that existing wireless sensor network (WSN)-based anomaly detection methods only consider and analyze temporal features, in this paper, a self-supervised learning-based anomaly node detection method based on an autoencoder is designed. This method integrates temporal WSN data flow feature extraction, spatial position feature extraction and intermodal WSN correlation feature extraction into the design of the autoencoder to make full use of the spatial and temporal information of the WSN for anomaly detection. First, a fully connected network is used to extract the temporal features of nodes by considering a single mode from a local spatial perspective. Second, a graph neural network (GNN) is used to introduce the WSN topology from a global spatial perspective for anomaly detection and extract the spatial and temporal features of the data flows of nodes and their neighbors by considering a single mode. Then, the adaptive fusion method involving weighted summation is used to extract the relevant features between different models. In addition, this paper introduces a gated recurrent unit (GRU) to solve the long-term dependence problem of the time dimension. Eventually, the reconstructed output of the decoder and the hidden layer representation of the autoencoder are fed into a fully connected network to calculate the anomaly probability of the current system. Since the spatial feature extraction operation is advanced, the designed method can be applied to the task of large-scale network anomaly detection by adding a clustering operation. Experiments show that the designed method outperforms the baselines, and the F1 score reaches 90.6%, which is 5.2% higher than those of the existing anomaly detection methods based on unsupervised reconstruction and prediction. Code and model are available at https://github.com/GuetYe/anomaly_detection/GLSL