Ye, Hui
MatchXML: An Efficient Text-label Matching Framework for Extreme Multi-label Text Classification
Ye, Hui, Sunderraman, Rajshekhar, Ji, Shihao
The eXtreme Multi-label text Classification(XMC) refers to training a classifier that assigns a text sample with relevant labels from an extremely large-scale label set (e.g., millions of labels). We propose MatchXML, an efficient text-label matching framework for XMC. We observe that the label embeddings generated from the sparse Term Frequency-Inverse Document Frequency(TF-IDF) features have several limitations. We thus propose label2vec to effectively train the semantic dense label embeddings by the Skip-gram model. The dense label embeddings are then used to build a Hierarchical Label Tree by clustering. In fine-tuning the pre-trained encoder Transformer, we formulate the multi-label text classification as a text-label matching problem in a bipartite graph. We then extract the dense text representations from the fine-tuned Transformer. Besides the fine-tuned dense text embeddings, we also extract the static dense sentence embeddings from a pre-trained Sentence Transformer. Finally, a linear ranker is trained by utilizing the sparse TF-IDF features, the fine-tuned dense text representations and static dense sentence features. Experimental results demonstrate that MatchXML achieves state-of-the-art accuracy on five out of six datasets. As for the speed, MatchXML outperforms the competing methods on all the six datasets. Our source code is publicly available at https://github.com/huiyegit/MatchXML.
Pretrained Generalized Autoregressive Model with Adaptive Probabilistic Label Clusters for Extreme Multi-label Text Classification
Ye, Hui, Chen, Zhiyu, Wang, Da-Han, Davison, Brian D.
Extreme multi-label text classification (XMTC) is a task for tagging a given text with the most relevant labels from an extremely large label set. We propose a novel deep learning method called APLC-XLNet. Our approach fine-tunes the recently released generalized autoregressive pretrained model (XLNet) to learn a dense representation for the input text. We propose Adaptive Probabilistic Label Clusters (APLC) to approximate the cross entropy loss by exploiting the unbalanced label distribution to form clusters that explicitly reduce the computational time. Our experiments, carried out on five benchmark datasets, show that our approach has achieved new state-of-the-art results on four benchmark datasets. Our source code is available publicly at https://github.com/huiyegit/APLC_XLNet.
k-sums: another side of k-means
Zhao, Wan-Lei, Chen, Run-Qing, Ye, Hui, Ngo, Chong-Wah
In this paper, the decades-old clustering method k-means is revisited. The original distortion minimization model of k-means is addressed by a pure stochastic minimization procedure. In each step of the iteration, one sample is tentatively reallocated from one cluster to another. It is moved to another cluster as long as the reallocation allows the sample to be closer to the new centroid. This optimization procedure converges faster to a better local minimum over k-means and many of its variants. This fundamental modification over the k-means loop leads to the redefinition of a family of k-means variants. Moreover, a new target function that minimizes the summation of pairwise distances within clusters is presented. We show that it could be solved under the same stochastic optimization procedure. This minimization procedure built upon two minimization models outperforms k-means and its variants considerably with different settings and on different datasets.
An Adaptive Approach for Anomaly Detector Selection and Fine-Tuning in Time Series
Ye, Hui, Ma, Xiaopeng, Pan, Qingfeng, Fang, Huaqiang, Xiang, Hang, Shao, Tongzhen
The anomaly detection of time series is a hotspot of time series data mining. The own characteristics of different anomaly detectors determine the abnormal data that they are good at. There is no detector can be optimizing in all types of anomalies. Moreover, it still has difficulties in industrial production due to problems such as a single detector can't be optimized at different time windows of the same time series. This paper proposes an adaptive model based on time series characteristics and selecting appropriate detector and run-time parameters for anomaly detection, which is called ATSDLN(Adaptive Time Series Detector Learning Network). We take the time series as the input of the model, and learn the time series representation through FCN. In order to realize the adaptive selection of detectors and run-time parameters according to the input time series, the outputs of FCN are the inputs of two sub-networks: the detector selection network and the run-time parameters selection network. In addition, the way that the variable layer width design of the parameter selection sub-network and the introduction of transfer learning make the model be with more expandability. Through experiments, it is found that ATSDLN can select appropriate anomaly detector and run-time parameters, and have strong expandability, which can quickly transfer. We investigate the performance of ATSDLN in public data sets, our methods outperform other methods in most cases with higher effect and better adaptation. We also show experimental results on public data sets to demonstrate how model structure and transfer learning affect the effectiveness.
EENMF: An End-to-End Neural Matching Framework for E-Commerce Sponsored Search
Wu, Wenjin, Liu, Guojun, Ye, Hui, Zhang, Chenshuang, Wu, Tianshu, Xiao, Daorui, Lin, Wei, Zhu, Xiaoyu
E-commerce sponsored search contributes an important part of revenue for the e-commerce company. In consideration of effectiveness and efficiency, a large-scale sponsored search system commonly adopts a multi-stage architecture. We name these stages as ad retrieval, ad pre-ranking and ad ranking. Ad retrieval and ad pre-ranking are collectively referred to as ad matching in this paper. We propose an end-to-end neural matching framework (EENMF) to model two tasks---vector-based ad retrieval and neural networks based ad pre-ranking. Under the deep matching framework, vector-based ad retrieval harnesses user recent behavior sequence to retrieve relevant ad candidates without the constraint of keyword bidding. Simultaneously, the deep model is employed to perform the global pre-ranking of ad candidates from multiple retrieval paths effectively and efficiently. Besides, the proposed model tries to optimize the pointwise cross-entropy loss which is consistent with the objective of predict models in the ranking stage. We conduct extensive evaluation to validate the performance of the proposed framework. In the real traffic of a large-scale e-commerce sponsored search, the proposed approach significantly outperforms the baseline.