Ye, Haotian
A Crosslingual Investigation of Conceptualization in 1335 Languages
Liu, Yihong, Ye, Haotian, Weissweiler, Leonie, Wicke, Philipp, Pei, Renhao, Zangenfeind, Robert, Schütze, Hinrich
Languages differ in how they divide up the world into concepts and words; e.g., in contrast to English, Swahili has a single concept for `belly' and `womb'. We investigate these differences in conceptualization across 1,335 languages by aligning concepts in a parallel corpus. To this end, we propose Conceptualizer, a method that creates a bipartite directed alignment graph between source language concepts and sets of target language strings. In a detailed linguistic analysis across all languages for one concept (`bird') and an evaluation on gold standard data for 32 Swadesh concepts, we show that Conceptualizer has good alignment accuracy. We demonstrate the potential of research on conceptualization in NLP with two experiments. (1) We define crosslingual stability of a concept as the degree to which it has 1-1 correspondences across languages, and show that concreteness predicts stability. (2) We represent each language by its conceptualization pattern for 83 concepts, and define a similarity measure on these representations. The resulting measure for the conceptual similarity of two languages is complementary to standard genealogical, typological, and surface similarity measures. For four out of six language families, we can assign languages to their correct family based on conceptual similarity with accuracy between 54% and 87%.
A study of conceptual language similarity: comparison and evaluation
Ye, Haotian, Liu, Yihong, Schütze, Hinrich
An interesting line of research in natural language processing (NLP) aims to incorporate linguistic typology to bridge linguistic diversity and assist the research of low-resource languages. While most works construct linguistic similarity measures based on lexical or typological features, such as word order and verbal inflection, recent work has introduced a novel approach to defining language similarity based on how they represent basic concepts, which is complementary to existing similarity measures. In this work, we study the conceptual similarity in detail and evaluate it extensively on a binary classification task.
Taxi1500: A Multilingual Dataset for Text Classification in 1500 Languages
Ma, Chunlan, ImaniGooghari, Ayyoob, Ye, Haotian, Asgari, Ehsaneddin, Schütze, Hinrich
While natural language processing tools have been developed extensively for some of the world's languages, a significant portion of the world's over 7000 languages are still neglected. One reason for this is that evaluation datasets do not yet cover a wide range of languages, including low-resource and endangered ones. We aim to address this issue by creating a text classification dataset encompassing a large number of languages, many of which currently have little to no annotated data available. We leverage parallel translations of the Bible to construct such a dataset by first developing applicable topics and employing a crowdsourcing tool to collect annotated data. By annotating the English side of the data and projecting the labels onto other languages through aligned verses, we generate text classification datasets for more than 1500 languages. We extensively benchmark several existing multilingual language models using our dataset. To facilitate the advancement of research in this area, we will release our dataset and code.
Freeze then Train: Towards Provable Representation Learning under Spurious Correlations and Feature Noise
Ye, Haotian, Zou, James, Zhang, Linjun
The existence of spurious correlations such as image backgrounds in the training environment can make empirical risk minimization (ERM) perform badly in the test environment. To address this problem, Kirichenko et al. (2022) empirically found that the core features that are related to the outcome can still be learned well even with the presence of spurious correlations. This opens a promising strategy to first train a feature learner rather than a classifier, and then perform linear probing (last layer retraining) in the test environment. However, a theoretical understanding of when and why this approach works is lacking. In this paper, we find that core features are only learned well when their associated non-realizable noise is smaller than that of spurious features, which is not necessarily true in practice. We provide both theories and experiments to support this finding and to illustrate the importance of non-realizable noise. Moreover, we propose an algorithm called Freeze then Train (FTT), that first freezes certain salient features and then trains the rest of the features using ERM. We theoretically show that FTT preserves features that are more beneficial to test time probing. Across two commonly used spurious correlation datasets, FTT outperforms ERM, IRM, JTT and CVaR-DRO, with substantial improvement in accuracy (by 4.5%) when the feature noise is large. FTT also performs better on general distribution shift benchmarks.
Discovering Latent Knowledge in Language Models Without Supervision
Burns, Collin, Ye, Haotian, Klein, Dan, Steinhardt, Jacob
Existing techniques for training language models can be misaligned with the truth: if we train models with imitation learning, they may reproduce errors that humans make; if we train them to generate text that humans rate highly, they may output errors that human evaluators can't detect. We propose circumventing this issue by directly finding latent knowledge inside the internal activations of a language model in a purely unsupervised way. Specifically, we introduce a method for accurately answering yes-no questions given only unlabeled model activations. It works by finding a direction in activation space that satisfies logical consistency properties, such as that a statement and its negation have opposite truth values. We show that despite using no supervision and no model outputs, our method can recover diverse knowledge represented in large language models: across 6 models and 10 question-answering datasets, it outperforms zero-shot accuracy by 4\% on average. We also find that it cuts prompt sensitivity in half and continues to maintain high accuracy even when models are prompted to generate incorrect answers. Our results provide an initial step toward discovering what language models know, distinct from what they say, even when we don't have access to explicit ground truth labels.