Ye, Haotian
Monitoring AI-Modified Content at Scale: A Case Study on the Impact of ChatGPT on AI Conference Peer Reviews
Liang, Weixin, Izzo, Zachary, Zhang, Yaohui, Lepp, Haley, Cao, Hancheng, Zhao, Xuandong, Chen, Lingjiao, Ye, Haotian, Liu, Sheng, Huang, Zhi, McFarland, Daniel A., Zou, James Y.
We present an approach for estimating the fraction of text in a large corpus which is likely to be substantially modified or produced by a large language model (LLM). Our maximum likelihood model leverages expert-written and AI-generated reference texts to accurately and efficiently examine real-world LLM-use at the corpus level. We apply this approach to a case study of scientific peer review in AI conferences that took place after the release of ChatGPT: ICLR 2024, NeurIPS 2023, CoRL 2023 and EMNLP 2023. Our results suggest that between 6.5% and 16.9% of text submitted as peer reviews to these conferences could have been substantially modified by LLMs, i.e. beyond spell-checking or minor writing updates. The circumstances in which generated text occurs offer insight into user behavior: the estimated fraction of LLM-generated text is higher in reviews which report lower confidence, were submitted close to the deadline, and from reviewers who are less likely to respond to author rebuttals. We also observe corpus-level trends in generated text which may be too subtle to detect at the individual level, and discuss the implications of such trends on peer review. We call for future interdisciplinary work to examine how LLM use is changing our information and knowledge practices.
TransMI: A Framework to Create Strong Baselines from Multilingual Pretrained Language Models for Transliterated Data
Liu, Yihong, Ma, Chunlan, Ye, Haotian, Schütze, Hinrich
Transliterating related languages that use different scripts into a common script shows effectiveness in improving crosslingual transfer in downstream tasks. However, this methodology often makes pretraining a model from scratch unavoidable, as transliteration brings about new subwords not covered in existing multilingual pretrained language models (mPLMs). This is not desired because it takes a lot of computation budget for pretraining. A more promising way is to make full use of available mPLMs. To this end, this paper proposes a simple but effective framework: Transliterate-Merge-Initialize (TransMI), which can create a strong baseline well-suited for data that is transliterated into a common script by exploiting an mPLM and its accompanied tokenizer. TransMI has three stages: (a) transliterate the vocabulary of an mPLM into a common script; (b) merge the new vocabulary with the original vocabulary; and (c) initialize the embeddings of the new subwords. We applied TransMI to three recent strong mPLMs, and our experiments demonstrate that TransMI not only preserves their ability to handle non-transliterated data, but also enables the models to effectively process transliterated data: the results show a consistent improvement of 3% to 34%, varying across different models and tasks. We make our code and models publicly available at \url{https://github.com/cisnlp/TransMI}.
DOF: Accelerating High-order Differential Operators with Forward Propagation
Li, Ruichen, Wang, Chuwei, Ye, Haotian, He, Di, Wang, Liwei
Solving partial differential equations (PDEs) efficiently is essential for analyzing complex physical systems. Recent advancements in leveraging deep learning for solving PDE have shown significant promise. Inspired by Forward Laplacian, a recent method on accelerating Laplacian computation, we propose an efficient computational framework, Differential Operator with Forward-propagation (DOF), for calculating general second-order differential operators without losing any precision. We provide rigorous proof of the advantages of our method over existing methods, demonstrating two times improvement in efficiency and reduced memory consumption on any architectures. Empirical results illustrate that our method surpasses traditional automatic differentiation (AutoDiff) techniques, achieving 2x improvement on the MLP structure and nearly 20x improvement on the MLP with Jacobian sparsity.
Selecting Large Language Model to Fine-tune via Rectified Scaling Law
Lin, Haowei, Huang, Baizhou, Ye, Haotian, Chen, Qinyu, Wang, Zihao, Li, Sujian, Ma, Jianzhu, Wan, Xiaojun, Zou, James, Liang, Yitao
The ever-growing ecosystem of LLMs has posed a challenge in selecting the most appropriate pre-trained model to fine-tune amidst a sea of options. Given constrained resources, fine-tuning all models and making selections afterward is unrealistic. In this work, we formulate this resource-constrained selection task into predicting fine-tuning performance and illustrate its natural connection with scaling laws. Unlike pre-training, We find that the fine-tuning scaling curve includes not just the well-known "power phase" but also the previously unobserved "pre-power phase". We also explain why existing scaling laws fail to capture this phase transition phenomenon both theoretically and empirically. To address this, we introduce the concept of "pre-learned data size" into our rectified scaling law, which overcomes theoretical limitations and fits experimental results much better. By leveraging our law, we propose a novel LLM selection algorithm that selects the near-optimal model with hundreds of times less resource consumption, while other methods may provide negatively correlated selection.
TransliCo: A Contrastive Learning Framework to Address the Script Barrier in Multilingual Pretrained Language Models
Liu, Yihong, Ma, Chunlan, Ye, Haotian, Schütze, Hinrich
There are 293 scripts representing over 7,000 languages in the written form. Due to various reasons, many closely related languages use different scripts, which poses difficulty for multilingual pretrained language models (mPLMs) in learning crosslingual knowledge through lexical overlap. As a result, mPLMs present a script barrier: representations from different scripts are located in different subspaces, which is a strong indicator of why crosslingual transfer involving languages of different scripts shows sub-optimal performance. To address this problem, we propose a simple framework TransliCo that contains Transliteration Contrastive Modeling (TCM) to fine-tune an mPLM by contrasting sentences in its training data and their transliterations in a unified script (Latn, in our case), which ensures uniformity in the representation space for different scripts. Using Glot500-m, an mPLM pretrained on over 500 languages, as our source model, we find-tune it on a small portion (5\%) of its training data, and refer to the resulting model as Furina. We show that Furina not only better aligns representations from distinct scripts but also outperforms the original Glot500-m on various crosslingual transfer tasks. Additionally, we achieve consistent improvement in a case study on the Indic group where the languages are highly related but use different scripts. We make our code and models publicly available.
MoSECroT: Model Stitching with Static Word Embeddings for Crosslingual Zero-shot Transfer
Ye, Haotian, Liu, Yihong, Ma, Chunlan, Schütze, Hinrich
Transformer-based pre-trained language models (PLMs) have achieved remarkable performance in various natural language processing (NLP) tasks. However, pre-training such models can take considerable resources that are almost only available to high-resource languages. On the contrary, static word embeddings are easier to train in terms of computing resources and the amount of data required. In this paper, we introduce MoSECroT Model Stitching with Static Word Embeddings for Crosslingual Zero-shot Transfer), a novel and challenging task that is especially relevant to low-resource languages for which static word embeddings are available. To tackle the task, we present the first framework that leverages relative representations to construct a common space for the embeddings of a source language PLM and the static word embeddings of a target language. In this way, we can train the PLM on source-language training data and perform zero-shot transfer to the target language by simply swapping the embedding layer. However, through extensive experiments on two classification datasets, we show that although our proposed framework is competitive with weak baselines when addressing MoSECroT, it fails to achieve competitive results compared with some strong baselines. In this paper, we attempt to explain this negative result and provide several thoughts on possible improvement.
Towards Revealing the Mystery behind Chain of Thought: A Theoretical Perspective
Feng, Guhao, Zhang, Bohang, Gu, Yuntian, Ye, Haotian, He, Di, Wang, Liwei
Recent studies have discovered that Chain-of-Thought prompting (CoT) can dramatically improve the performance of Large Language Models (LLMs), particularly when dealing with complex tasks involving mathematics or reasoning. Despite the enormous empirical success, the underlying mechanisms behind CoT and how it unlocks the potential of LLMs remain elusive. In this paper, we take a first step towards theoretically answering these questions. Specifically, we examine the expressivity of LLMs with CoT in solving fundamental mathematical and decision-making problems. By using circuit complexity theory, we first give impossibility results showing that bounded-depth Transformers are unable to directly produce correct answers for basic arithmetic/equation tasks unless the model size grows super-polynomially with respect to the input length. In contrast, we then prove by construction that autoregressive Transformers of constant size suffice to solve both tasks by generating CoT derivations using a commonly used math language format. Moreover, we show LLMs with CoT can handle a general class of decision-making problems known as Dynamic Programming, thus justifying its power in tackling complex real-world tasks. Finally, an extensive set of experiments show that, while Transformers always fail to directly predict the answers, they can consistently learn to generate correct solutions step-by-step given sufficient CoT demonstrations.
Crosslingual Transfer Learning for Low-Resource Languages Based on Multilingual Colexification Graphs
Liu, Yihong, Ye, Haotian, Weissweiler, Leonie, Pei, Renhao, Schütze, Hinrich
In comparative linguistics, colexification refers to the phenomenon of a lexical form conveying two or more distinct meanings. Existing work on colexification patterns relies on annotated word lists, limiting scalability and usefulness in NLP. In contrast, we identify colexification patterns of more than 2,000 concepts across 1,335 languages directly from an unannotated parallel corpus. We then propose simple and effective methods to build multilingual graphs from the colexification patterns: ColexNet and ColexNet+. ColexNet's nodes are concepts and its edges are colexifications. In ColexNet+, concept nodes are additionally linked through intermediate nodes, each representing an ngram in one of 1,334 languages. We use ColexNet+ to train $\overrightarrow{\mbox{ColexNet+}}$, high-quality multilingual embeddings that are well-suited for transfer learning. In our experiments, we first show that ColexNet achieves high recall on CLICS, a dataset of crosslingual colexifications. We then evaluate $\overrightarrow{\mbox{ColexNet+}}$ on roundtrip translation, sentence retrieval and sentence classification and show that our embeddings surpass several transfer learning baselines. This demonstrates the benefits of using colexification as a source of information in multilingual NLP.
Forward Laplacian: A New Computational Framework for Neural Network-based Variational Monte Carlo
Li, Ruichen, Ye, Haotian, Jiang, Du, Wen, Xuelan, Wang, Chuwei, Li, Zhe, Li, Xiang, He, Di, Chen, Ji, Ren, Weiluo, Wang, Liwei
Neural network-based variational Monte Carlo (NN-VMC) has emerged as a promising cutting-edge technique of ab initio quantum chemistry. However, the high computational cost of existing approaches hinders their applications in realistic chemistry problems. Here, we report the development of a new NN-VMC method that achieves a remarkable speed-up by more than one order of magnitude, thereby greatly extending the applicability of NN-VMC to larger systems. Our key design is a novel computational framework named Forward Laplacian, which computes the Laplacian associated with neural networks, the bottleneck of NN-VMC, through an efficient forward propagation process. We then demonstrate that Forward Laplacian is not only versatile but also facilitates more developments of acceleration methods across various aspects, including optimization for sparse derivative matrix and efficient neural network design. Empirically, our approach enables NN-VMC to investigate a broader range of atoms, molecules and chemical reactions for the first time, providing valuable references to other ab initio methods. The results demonstrate a great potential in applying deep learning methods to solve general quantum mechanical problems.
On the Power of Pre-training for Generalization in RL: Provable Benefits and Hardness
Ye, Haotian, Chen, Xiaoyu, Wang, Liwei, Du, Simon S.
Generalization in Reinforcement Learning (RL) aims to learn an agent during training that generalizes to the target environment. This paper studies RL generalization from a theoretical aspect: how much can we expect pre-training over training environments to be helpful? When the interaction with the target environment is not allowed, we certify that the best we can obtain is a near-optimal policy in an average sense, and we design an algorithm that achieves this goal. Furthermore, when the agent is allowed to interact with the target environment, we give a surprising result showing that asymptotically, the improvement from pre-training is at most a constant factor. On the other hand, in the non-asymptotic regime, we design an efficient algorithm and prove a distribution-based regret bound in the target environment that is independent of the state-action space.