Ye, Guangnan
Towards Million-Scale Adversarial Robustness Evaluation With Stronger Individual Attacks
Xie, Yong, Zheng, Weijie, Huang, Hanxun, Ye, Guangnan, Ma, Xingjun
As deep learning models are increasingly deployed in safety-critical applications, evaluating their vulnerabilities to adversarial perturbations is essential for ensuring their reliability and trustworthiness. Over the past decade, a large number of white-box adversarial robustness evaluation methods (i.e., attacks) have been proposed, ranging from single-step to multi-step methods and from individual to ensemble methods. Despite these advances, challenges remain in conducting meaningful and comprehensive robustness evaluations, particularly when it comes to large-scale testing and ensuring evaluations reflect real-world adversarial risks. In this work, we focus on image classification models and propose a novel individual attack method, Probability Margin Attack (PMA), which defines the adversarial margin in the probability space rather than the logits space. We analyze the relationship between PMA and existing cross-entropy or logits-margin-based attacks, and show that PMA can outperform the current state-of-the-art individual methods. Building on PMA, we propose two types of ensemble attacks that balance effectiveness and efficiency. Furthermore, we create a million-scale dataset, CC1M, derived from the existing CC3M dataset, and use it to conduct the first million-scale white-box adversarial robustness evaluation of adversarially-trained ImageNet models. Our findings provide valuable insights into the robustness gaps between individual versus ensemble attacks and small-scale versus million-scale evaluations.
White-box Multimodal Jailbreaks Against Large Vision-Language Models
Wang, Ruofan, Ma, Xingjun, Zhou, Hanxu, Ji, Chuanjun, Ye, Guangnan, Jiang, Yu-Gang
Recent advancements in Large Vision-Language Models (VLMs) have underscored their superiority in various multimodal tasks. However, the adversarial robustness of VLMs has not been fully explored. Existing methods mainly assess robustness through unimodal adversarial attacks that perturb images, while assuming inherent resilience against text-based attacks. Different from existing attacks, in this work we propose a more comprehensive strategy that jointly attacks both text and image modalities to exploit a broader spectrum of vulnerability within VLMs. Specifically, we propose a dual optimization objective aimed at guiding the model to generate affirmative responses with high toxicity. Our attack method begins by optimizing an adversarial image prefix from random noise to generate diverse harmful responses in the absence of text input, thus imbuing the image with toxic semantics. Subsequently, an adversarial text suffix is integrated and co-optimized with the adversarial image prefix to maximize the probability of eliciting affirmative responses to various harmful instructions. The discovered adversarial image prefix and text suffix are collectively denoted as a Universal Master Key (UMK). When integrated into various malicious queries, UMK can circumvent the alignment defenses of VLMs and lead to the generation of objectionable content, known as jailbreaks. The experimental results demonstrate that our universal attack strategy can effectively jailbreak MiniGPT-4 with a 96% success rate, highlighting the vulnerability of VLMs and the urgent need for new alignment strategies.
FedCAda: Adaptive Client-Side Optimization for Accelerated and Stable Federated Learning
Zhou, Liuzhi, He, Yu, Zhai, Kun, Liu, Xiang, Liu, Sen, Ma, Xingjun, Ye, Guangnan, Jiang, Yu-Gang, Chai, Hongfeng
Federated learning (FL) has emerged as a prominent approach for collaborative training of machine learning models across distributed clients while preserving data privacy. However, the quest to balance acceleration and stability becomes a significant challenge in FL, especially on the client-side. In this paper, we introduce FedCAda, an innovative federated client adaptive algorithm designed to tackle this challenge. FedCAda leverages the Adam algorithm to adjust the correction process of the first moment estimate $m$ and the second moment estimate $v$ on the client-side and aggregate adaptive algorithm parameters on the server-side, aiming to accelerate convergence speed and communication efficiency while ensuring stability and performance. Additionally, we investigate several algorithms incorporating different adjustment functions. This comparative analysis revealed that due to the limited information contained within client models from other clients during the initial stages of federated learning, more substantial constraints need to be imposed on the parameters of the adaptive algorithm. As federated learning progresses and clients gather more global information, FedCAda gradually diminishes the impact on adaptive parameters. These findings provide insights for enhancing the robustness and efficiency of algorithmic improvements. Through extensive experiments on computer vision (CV) and natural language processing (NLP) datasets, we demonstrate that FedCAda outperforms the state-of-the-art methods in terms of adaptability, convergence, stability, and overall performance. This work contributes to adaptive algorithms for federated learning, encouraging further exploration.
RAGFormer: Learning Semantic Attributes and Topological Structure for Fraud Detection
Li, Haolin, Jiang, Shuyang, Zhang, Lifeng, Du, Siyuan, Ye, Guangnan, Chai, Hongfeng
Fraud detection remains a challenging task due to the complex and deceptive nature of fraudulent activities. Current approaches primarily concentrate on learning only one perspective of the graph: either the topological structure of the graph or the attributes of individual nodes. However, we conduct empirical studies to reveal that these two types of features, while nearly orthogonal, are each independently effective. As a result, previous methods can not fully capture the comprehensive characteristics of the fraud graph. To address this dilemma, we present a novel framework called Relation-Aware GNN with transFormer~(RAGFormer) which simultaneously embeds both semantic and topological features into a target node. The simple yet effective network consists of a semantic encoder, a topology encoder, and an attention fusion module. The semantic encoder utilizes Transformer to learn semantic features and node interactions across different relations. We introduce Relation-Aware GNN as the topology encoder to learn topological features and node interactions within each relation. These two complementary features are interleaved through an attention fusion module to support prediction by both orthogonal features. Extensive experiments on two popular public datasets demonstrate that RAGFormer achieves state-of-the-art performance. The significant improvement of RAGFormer in an industrial credit card fraud detection dataset further validates the applicability of our method in real-world business scenarios.
The Dog Walking Theory: Rethinking Convergence in Federated Learning
Zhai, Kun, Gao, Yifeng, Ma, Xingjun, Zou, Difan, Ye, Guangnan, Jiang, Yu-Gang
Federated learning (FL) is a collaborative learning paradigm that allows different clients to train one powerful global model without sharing their private data. Although FL has demonstrated promising results in various applications, it is known to suffer from convergence issues caused by the data distribution shift across different clients, especially on non-independent and identically distributed (non-IID) data. In this paper, we study the convergence of FL on non-IID data and propose a novel \emph{Dog Walking Theory} to formulate and identify the missing element in existing research. The Dog Walking Theory describes the process of a dog walker leash walking multiple dogs from one side of the park to the other. The goal of the dog walker is to arrive at the right destination while giving the dogs enough exercise (i.e., space exploration). In FL, the server is analogous to the dog walker while the clients are analogous to the dogs. This analogy allows us to identify one crucial yet missing element in existing FL algorithms: the leash that guides the exploration of the clients. To address this gap, we propose a novel FL algorithm \emph{FedWalk} that leverages an external easy-to-converge task at the server side as a \emph{leash task} to guide the local training of the clients. We theoretically analyze the convergence of FedWalk with respect to data heterogeneity (between server and clients) and task discrepancy (between the leash and the original tasks). Experiments on multiple benchmark datasets demonstrate the superiority of FedWalk over state-of-the-art FL methods under both IID and non-IID settings.
SilverSight: A Multi-Task Chinese Financial Large Language Model Based on Adaptive Semantic Space Learning
Zhou, Yuhang, Li, Zeping, Tian, Siyu, Ni, Yuchen, Liu, Sen, Ye, Guangnan, Chai, Hongfeng
Large language models (LLMs) are increasingly being applied across various specialized fields, leveraging their extensive knowledge to empower a multitude of scenarios within these domains. However, each field encompasses a variety of specific tasks that require learning, and the diverse, heterogeneous data across these domains can lead to conflicts during model task transfer. In response to this challenge, our study introduces an Adaptive Semantic Space Learning (ASSL) framework, which utilizes the adaptive reorganization of data distributions within the semantic space to enhance the performance and selection efficacy of multi-expert models. Utilizing this framework, we trained a financial multi-task LLM named "SilverSight". Our research findings demonstrate that our framework can achieve results close to those obtained with full data training using only 10% of the data, while also exhibiting strong generalization capabilities.
$R^3$-NL2GQL: A Hybrid Models Approach for for Accuracy Enhancing and Hallucinations Mitigation
Zhou, Yuhang, Yu, He, Tian, Siyu, Chen, Dan, Zhou, Liuzhi, Yu, Xinlin, Ji, Chuanjun, Liu, Sen, Ye, Guangnan, Chai, Hongfeng
While current NL2SQL tasks constructed using Foundation Models have achieved commendable results, their direct application to Natural Language to Graph Query Language (NL2GQL) tasks poses challenges due to the significant differences between GQL and SQL expressions, as well as the numerous types of GQL. Our extensive experiments reveal that in NL2GQL tasks, larger Foundation Models demonstrate superior cross-schema generalization abilities, while smaller Foundation Models struggle to improve their GQL generation capabilities through fine-tuning. However, after fine-tuning, smaller models exhibit better intent comprehension and higher grammatical accuracy. Diverging from rule-based and slot-filling techniques, we introduce R3-NL2GQL, which employs both smaller and larger Foundation Models as reranker, rewriter and refiner. The approach harnesses the comprehension ability of smaller models for information reranker and rewriter, and the exceptional generalization and generation capabilities of larger models to transform input natural language queries and code structure schema into any form of GQLs. Recognizing the lack of established datasets in this nascent domain, we have created a bilingual dataset derived from graph database documentation and some open-source Knowledge Graphs (KGs). We tested our approach on this dataset and the experimental results showed that delivers promising performance and robustness.Our code and dataset is available at https://github.com/zhiqix/NL2GQL
VFLAIR: A Research Library and Benchmark for Vertical Federated Learning
Zou, Tianyuan, Gu, Zixuan, He, Yu, Takahashi, Hideaki, Liu, Yang, Ye, Guangnan, Zhang, Ya-Qin
Vertical Federated Learning (VFL) has emerged as a collaborative training paradigm that allows participants with different features of the same group of users to accomplish cooperative training without exposing their raw data or model parameters. VFL has gained significant attention for its research potential and real-world applications in recent years, but still faces substantial challenges, such as in defending various kinds of data inference and backdoor attacks. Moreover, most of existing VFL projects are industry-facing and not easily used for keeping track of the current research progress. To address this need, we present an extensible and lightweight VFL framework VFLAIR (available at https://github.com/FLAIR-THU/VFLAIR), which supports VFL training with a variety of models, datasets and protocols, along with standardized modules for comprehensive evaluations of attacks and defense strategies. We also benchmark 11 attacks and 8 defenses performance under different communication and model partition settings and draw concrete insights and recommendations on the choice of defense strategies for different practical VFL deployment scenario.
Multi-Domain Transformer-Based Counterfactual Augmentation for Earnings Call Analysis
Yuan, Zixuan, Zhu, Yada, Zhang, Wei, Huang, Ziming, Ye, Guangnan, Xiong, Hui
Earnings call (EC), as a periodic teleconference of a publicly-traded company, has been extensively studied as an essential market indicator because of its high analytical value in corporate fundamentals. The recent emergence of deep learning techniques has shown great promise in creating automated pipelines to benefit the EC-supported financial applications. However, these methods presume all included contents to be informative without refining valuable semantics from long-text transcript and suffer from EC scarcity issue. Meanwhile, these black-box methods possess inherent difficulties in providing human-understandable explanations. To this end, in this paper, we propose a Multi-Domain Transformer-Based Counterfactual Augmentation, named MTCA, to address the above problems. Specifically, we first propose a transformer-based EC encoder to attentively quantify the task-inspired significance of critical EC content for market inference. Then, a multi-domain counterfactual learning framework is developed to evaluate the gradient-based variations after we perturb limited EC informative texts with plentiful cross-domain documents, enabling MTCA to perform unsupervised data augmentation. As a bonus, we discover a way to use non-training data as instance-based explanations for which we show the result with case studies. Extensive experiments on the real-world financial datasets demonstrate the effectiveness of interpretable MTCA for improving the volatility evaluation ability of the state-of-the-art by 14.2\% in accuracy.
On Sample Based Explanation Methods for NLP:Efficiency, Faithfulness, and Semantic Evaluation
Zhang, Wei, Huang, Ziming, Zhu, Yada, Ye, Guangnan, Cui, Xiaodong, Zhang, Fan
In the recent advances of natural language processing, the scale of the state-of-the-art models and datasets is usually extensive, which challenges the application of sample-based explanation methods in many aspects, such as explanation interpretability, efficiency, and faithfulness. In this work, for the first time, we can improve the interpretability of explanations by allowing arbitrary text sequences as the explanation unit. On top of this, we implement a hessian-free method with a model faithfulness guarantee. Finally, to compare our method with the others, we propose a semantic-based evaluation metric that can better align with humans' judgment of explanations than the widely adopted diagnostic or re-training measures. The empirical results on multiple real data sets demonstrate the proposed method's superior performance to popular explanation techniques such as Influence Function or TracIn on semantic evaluation.