Goto

Collaborating Authors

 Yazdani, Amir


Proceedings of the AI-HRI Symposium at AAAI-FSS 2022

arXiv.org Artificial Intelligence

The Artificial Intelligence (AI) for Human-Robot Interaction (HRI) Symposium has been a successful venue of discussion and collaboration on AI theory and methods aimed at HRI since 2014. This year, after a review of the achievements of the AI-HRI community over the last decade in 2021, we are focusing on a visionary theme: exploring the future of AI-HRI. Accordingly, we added a Blue Sky Ideas track to foster a forward-thinking discussion on future research at the intersection of AI and HRI. As always, we appreciate all contributions related to any topic on AI/HRI and welcome new researchers who wish to take part in this growing community. With the success of past symposia, AI-HRI impacts a variety of communities and problems, and has pioneered the discussions in recent trends and interests. This year's AI-HRI Fall Symposium aims to bring together researchers and practitioners from around the globe, representing a number of university, government, and industry laboratories. In doing so, we hope to accelerate research in the field, support technology transition and user adoption, and determine future directions for our group and our research.


Ergonomically Intelligent Physical Human-Robot Interaction: Postural Estimation, Assessment, and Optimization

arXiv.org Artificial Intelligence

Ergonomics and human comfort are essential concerns in physical human-robot interaction applications, and common practical methods either fail in estimating the correct posture due to occlusion or suffer from less accurate ergonomics models in their postural optimization methods. Instead, we propose a novel framework for posture estimation, assessment, and optimization for ergonomically intelligent physical human-robot interaction. We show that we can estimate human posture solely from the trajectory of the interacting robot. We propose DULA, a differentiable ergonomics model, and use it in gradient-free postural optimization for physical human-robot interaction tasks such as co-manipulation and teleoperation. We evaluate our framework through human and simulation experiments.


DULA: A Differentiable Ergonomics Model for Postural Optimization in Physical HRI

arXiv.org Artificial Intelligence

Ergonomics and human comfort are essential concerns in physical human-robot interaction applications. Defining an accurate and easy-to-use ergonomic assessment model stands as an important step in providing feedback for postural correction to improve operator health and comfort. In order to enable efficient computation, previously proposed automated ergonomic assessment and correction tools make approximations or simplifications to gold-standard assessment tools used by ergonomists in practice. In order to retain assessment quality, while improving computational considerations, we introduce DULA, a differentiable and continuous ergonomics model learned to replicate the popular and scientifically validated RULA assessment. We show that DULA provides assessment comparable to RULA while providing computational benefits. We highlight DULA's strength in a demonstration of gradient-based postural optimization for a simulated teleoperation task.