Goto

Collaborating Authors

 Yasuoka, Kenji


MD-GAN with multi-particle input: the machine learning of long-time molecular behavior from short-time MD data

arXiv.org Machine Learning

MD-GAN is a machine learning-based method that can evolve part of the system at any time step, accelerating the generation of molecular dynamics data. For the accurate prediction of MD-GAN, sufficient information on the dynamics of a part of the system should be included with the training data. Therefore, the selection of the part of the system is important for efficient learning. In a previous study, only one particle (or vector) of each molecule was extracted as part of the system. Therefore, we investigated the effectiveness of adding information from other particles to the learning process. In the experiment of the polyethylene system, when the dynamics of three particles of each molecule were used, the diffusion was successfully predicted using one-third of the time length of the training data, compared to the single-particle input. Surprisingly, the unobserved transition of diffusion in the training data was also predicted using this method.


Multi-Step Time Series Generator for Molecular Dynamics

AAAI Conferences

Molecular dynamics (MD) is a powerful computational method for simulating molecular behavior. Deep neural networks provide a novel method of generating MD data efficiently, but there is no architecture that mitigates the well-known exposure bias accumulated by multi-step generations. In this paper, we propose a multi-step time series generator using a deep neural network based on Wasserstein generative adversarial nets. Instead of sparse real data, our model evolves a latent variable z that is densely distributed in a low-dimensional space. This novel framework successfully mitigates the exposure bias. Moreover, our model can evolve part of the system (Feature extraction) with any time step (Step skip), which accelerates the efficient generation of MD data. The applicability of this model is evaluated through three different systems: harmonic oscillator, bulk water, and polymer melts. The experimental results demonstrate that our model can generate time series of the MD data with sufficient accuracy to calculate the physical and important dynamical statistics.