Goto

Collaborating Authors

 Yao, Yuguang


Safety Mirage: How Spurious Correlations Undermine VLM Safety Fine-tuning

arXiv.org Artificial Intelligence

Recent vision-language models (VLMs) have made remarkable strides in generative modeling with multimodal inputs, particularly text and images. However, their susceptibility to generating harmful content when exposed to unsafe queries raises critical safety concerns. While current alignment strategies primarily rely on supervised safety fine-tuning with curated datasets, we identify a fundamental limitation we call the "safety mirage" where supervised fine-tuning inadvertently reinforces spurious correlations between superficial textual patterns and safety responses, rather than fostering deep, intrinsic mitigation of harm. We show that these spurious correlations leave fine-tuned VLMs vulnerable even to a simple one-word modification-based attack, where substituting a single word in text queries with a spurious correlation-inducing alternative can effectively bypass safeguards. Additionally, these correlations contribute to the over prudence, causing fine-tuned VLMs to refuse benign queries unnecessarily. To address this issue, we show machine unlearning (MU) as a powerful alternative to supervised safety fine-tuning as it avoids biased feature-label mappings and directly removes harmful knowledge from VLMs while preserving their general capabilities. Extensive evaluations across safety benchmarks show that under one-word attacks, MU-based alignment reduces the attack success rate by up to 60.17% and cuts unnecessary rejections by over 84.20%. Codes are available at https://github.com/OPTML-Group/VLM-Safety-MU. WARNING: There exist AI generations that may be offensive in nature.


Prompt Diffusion Robustifies Any-Modality Prompt Learning

arXiv.org Artificial Intelligence

Foundation models enable prompt-based classifiers for zero-shot and few-shot learning. Nonetheless, the conventional method of employing fixed prompts suffers from distributional shifts that negatively impact generalizability to unseen samples. This paper introduces prompt diffusion, which uses a diffusion model to gradually refine the prompts to obtain a customized prompt for each sample. Specifically, we first optimize a collection of prompts to obtain over-fitted prompts per sample. Then, we propose a prompt diffusion model within the prompt space, enabling the training of a generative transition process from a random prompt to its overfitted prompt. As we cannot access the label of a test image during inference, our model gradually generates customized prompts solely from random prompts using our trained, prompt diffusion. Our prompt diffusion is generic, flexible, and modality-agnostic, making it a simple plug-and-play module seamlessly embedded into existing prompt learning methods for textual, visual, or multi-modal prompt learning. Our diffusion model uses a fast ODE-based sampling strategy to optimize test sample prompts in just five steps, offering a good trade-off between performance improvement and computational efficiency. For all prompt learning methods tested, adding prompt diffusion yields more robust results for base-to-new generalization, cross-dataset generalization, and domain generalization in classification tasks tested over 15 diverse datasets.


Adversarial Watermarking for Face Recognition

arXiv.org Artificial Intelligence

Watermarking is an essential technique for embedding an identifier (i.e., watermark message) within digital images to assert ownership and monitor unauthorized alterations. In face recognition systems, watermarking plays a pivotal role in ensuring data integrity and security. However, an adversary could potentially interfere with the watermarking process, significantly impairing recognition performance. We explore the interaction between watermarking and adversarial attacks on face recognition models. Our findings reveal that while watermarking or input-level perturbation alone may have a negligible effect on recognition accuracy, the combined effect of watermarking and perturbation can result in an adversarial watermarking attack, significantly degrading recognition performance. Specifically, we introduce a novel threat model, the adversarial watermarking attack, which remains stealthy in the absence of watermarking, allowing images to be correctly recognized initially. However, once watermarking is applied, the attack is activated, causing recognition failures. Our study reveals a previously unrecognized vulnerability: adversarial perturbations can exploit the watermark message to evade face recognition systems. Evaluated on the CASIA-WebFace dataset, our proposed adversarial watermarking attack reduces face matching accuracy by 67.2% with an $\ell_\infty$ norm-measured perturbation strength of ${2}/{255}$ and by 95.9% with a strength of ${4}/{255}$.


Backdoor Secrets Unveiled: Identifying Backdoor Data with Optimized Scaled Prediction Consistency

arXiv.org Artificial Intelligence

Modern machine learning (ML) systems demand substantial training data, often resorting to external sources. Nevertheless, this practice renders them vulnerable to backdoor poisoning attacks. Prior backdoor defense strategies have primarily focused on the identification of backdoored models or poisoned data characteristics, typically operating under the assumption of access to clean data. In this work, we delve into a relatively underexplored challenge: the automatic identification of backdoor data within a poisoned dataset, all under realistic conditions, i.e., without the need for additional clean data or without manually defining a threshold for backdoor detection. We draw an inspiration from the scaled prediction consistency (SPC) technique, which exploits the prediction invariance of poisoned data to an input scaling factor. Based on this, we pose the backdoor data identification problem as a hierarchical data splitting optimization problem, leveraging a novel SPC-based loss function as the primary optimization objective. Our innovation unfolds in several key aspects. First, we revisit the vanilla SPC method, unveiling its limitations in addressing the proposed backdoor identification problem. Subsequently, we develop a bi-level optimization-based approach to precisely identify backdoor data by minimizing the advanced SPC loss. Finally, we demonstrate the efficacy of our proposal against a spectrum of backdoor attacks, encompassing basic label-corrupted attacks as well as more sophisticated clean-label attacks, evaluated across various benchmark datasets. Experiment results show that our approach often surpasses the performance of current baselines in identifying backdoor data points, resulting in about 4%-36% improvement in average AUROC. Codes are available at https://github.com/OPTML-Group/BackdoorMSPC.


Rethinking Machine Unlearning for Large Language Models

arXiv.org Artificial Intelligence

We explore machine unlearning (MU) in the domain of large language models (LLMs), referred to as LLM unlearning. This initiative aims to eliminate undesirable data influence (e.g., sensitive or illegal information) and the associated model capabilities, while maintaining the integrity of essential knowledge generation and not affecting causally unrelated information. We envision LLM unlearning becoming a pivotal element in the life-cycle management of LLMs, potentially standing as an essential foundation for developing generative AI that is not only safe, secure, and trustworthy, but also resource-efficient without the need of full retraining. We navigate the unlearning landscape in LLMs from conceptual formulation, methodologies, metrics, and applications. In particular, we highlight the often-overlooked aspects of existing LLM unlearning research, e.g., unlearning scope, data-model interaction, and multifaceted efficacy assessment. We also draw connections between LLM unlearning and related areas such as model editing, influence functions, model explanation, adversarial training, and reinforcement learning. Furthermore, we outline an effective assessment framework for LLM unlearning and explore its applications in copyright and privacy safeguards and sociotechnical harm reduction.


Model Sparsity Can Simplify Machine Unlearning

arXiv.org Artificial Intelligence

In response to recent data regulation requirements, machine unlearning (MU) has emerged as a critical process to remove the influence of specific examples from a given model. Although exact unlearning can be achieved through complete model retraining using the remaining dataset, the associated computational costs have driven the development of efficient, approximate unlearning techniques. Moving beyond data-centric MU approaches, our study introduces a novel model-based perspective: model sparsification via weight pruning, which is capable of reducing the gap between exact unlearning and approximate unlearning. We show in both theory and practice that model sparsity can boost the multi-criteria unlearning performance of an approximate unlearner, closing the approximation gap, while continuing to be efficient. This leads to a new MU paradigm, termed prune first, then unlearn, which infuses a sparse model prior into the unlearning process. Building on this insight, we also develop a sparsity-aware unlearning method that utilizes sparsity regularization to enhance the training process of approximate unlearning. Extensive experiments show that our proposals consistently benefit MU in various unlearning scenarios. A notable highlight is the 77% unlearning efficacy gain of fine-tuning (one of the simplest unlearning methods) when using sparsity-aware unlearning. Furthermore, we demonstrate the practical impact of our proposed MU methods in addressing other machine learning challenges, such as defending against backdoor attacks and enhancing transfer learning. Codes are available at https://github.com/OPTML-Group/Unlearn-Sparse.


An Introduction to Bi-level Optimization: Foundations and Applications in Signal Processing and Machine Learning

arXiv.org Artificial Intelligence

Recently, bi-level optimization (BLO) has taken center stage in some very exciting developments in the area of signal processing (SP) and machine learning (ML). Roughly speaking, BLO is a classical optimization problem that involves two levels of hierarchy (i.e., upper and lower levels), wherein obtaining the solution to the upper-level problem requires solving the lower-level one. BLO has become popular largely because it is powerful in modeling problems in SP and ML, among others, that involve optimizing nested objective functions. Prominent applications of BLO range from resource allocation for wireless systems to adversarial machine learning. In this work, we focus on a class of tractable BLO problems that often appear in SP and ML applications. We provide an overview of some basic concepts of this class of BLO problems, such as their optimality conditions, standard algorithms (including their optimization principles and practical implementations), as well as how they can be leveraged to obtain state-of-the-art results for a number of key SP and ML applications. Further, we discuss some recent advances in BLO theory, its implications for applications, and point out some limitations of the state-of-the-art that require significant future research efforts. Overall, we hope that this article can serve to accelerate the adoption of BLO as a generic tool to model, analyze, and innovate on a wide array of emerging SP and ML applications.


From Trojan Horses to Castle Walls: Unveiling Bilateral Backdoor Effects in Diffusion Models

arXiv.org Artificial Intelligence

While state-of-the-art diffusion models (DMs) excel in image generation, concerns regarding their security persist. Earlier research highlighted DMs' vulnerability to backdoor attacks, but these studies placed stricter requirements than conventional methods like 'BadNets' in image classification. This is because the former necessitates modifications to the diffusion sampling and training procedures. Unlike the prior work, we investigate whether generating backdoor attacks in DMs can be as simple as BadNets, i.e., by only contaminating the training dataset without tampering the original diffusion process. In this more realistic backdoor setting, we uncover bilateral backdoor effects that not only serve an adversarial purpose (compromising the functionality of DMs) but also offer a defensive advantage (which can be leveraged for backdoor defense). Specifically, we find that a BadNets-like backdoor attack remains effective in DMs for producing incorrect images (misaligned with the intended text conditions), and thereby yielding incorrect predictions when DMs are used as classifiers. Meanwhile, backdoored DMs exhibit an increased ratio of backdoor triggers, a phenomenon we refer to as `trigger amplification', among the generated images. We show that this latter insight can be used to enhance the detection of backdoor-poisoned training data. Even under a low backdoor poisoning ratio, studying the backdoor effects of DMs is also valuable for designing anti-backdoor image classifiers. Last but not least, we establish a meaningful linkage between backdoor attacks and the phenomenon of data replications by exploring DMs' inherent data memorization tendencies. The codes of our work are available at https://github.com/OPTML-Group/BiBadDiff.


Visual Prompting for Adversarial Robustness

arXiv.org Artificial Intelligence

In this work, we leverage visual prompting (VP) to improve adversarial robustness of a fixed, pre-trained model at testing time. Compared to conventional adversarial defenses, VP allows us to design universal (i.e., data-agnostic) input prompting templates, which have plug-and-play capabilities at testing time to achieve desired model performance without introducing much computation overhead. Although VP has been successfully applied to improving model generalization, it remains elusive whether and how it can be used to defend against adversarial attacks. We investigate this problem and show that the vanilla VP approach is not effective in adversarial defense since a universal input prompt lacks the capacity for robust learning against sample-specific adversarial perturbations. To circumvent it, we propose a new VP method, termed Class-wise Adversarial Visual Prompting (C-AVP), to generate class-wise visual prompts so as to not only leverage the strengths of ensemble prompts but also optimize their interrelations to improve model robustness. Our experiments show that C-AVP outperforms the conventional VP method, with 2.1X standard accuracy gain and 2X robust accuracy gain. Compared to classical test-time defenses, C-AVP also yields a 42X inference time speedup.


Advancing Model Pruning via Bi-level Optimization

arXiv.org Artificial Intelligence

The deployment constraints in practical applications necessitate the pruning of large-scale deep learning models, i.e., promoting their weight sparsity. As illustrated by the Lottery Ticket Hypothesis (LTH), pruning also has the potential of improving their generalization ability. At the core of LTH, iterative magnitude pruning (IMP) is the predominant pruning method to successfully find 'winning tickets'. Yet, the computation cost of IMP grows prohibitively as the targeted pruning ratio increases. To reduce the computation overhead, various efficient 'one-shot' pruning methods have been developed, but these schemes are usually unable to find winning tickets as good as IMP. This raises the question of how to close the gap between pruning accuracy and pruning efficiency? To tackle it, we pursue the algorithmic advancement of model pruning. Specifically, we formulate the pruning problem from a fresh and novel viewpoint, bi-level optimization (BLO). We show that the BLO interpretation provides a technically-grounded optimization base for an efficient implementation of the pruning-retraining learning paradigm used in IMP. We also show that the proposed bi-level optimization-oriented pruning method (termed BiP) is a special class of BLO problems with a bi-linear problem structure. By leveraging such bi-linearity, we theoretically show that BiP can be solved as easily as first-order optimization, thus inheriting the computation efficiency. Through extensive experiments on both structured and unstructured pruning with 5 model architectures and 4 data sets, we demonstrate that BiP can find better winning tickets than IMP in most cases, and is computationally as efficient as the one-shot pruning schemes, demonstrating 2-7 times speedup over IMP for the same level of model accuracy and sparsity.