Yao, Wang
NF-MKV Net: A Constraint-Preserving Neural Network Approach to Solving Mean-Field Games Equilibrium
Liu, Jinwei, Ren, Lu, Yao, Wang, Zhang, Xiao
Neural network-based methods for solving Mean-Field Games (MFGs) equilibria have garnered significant attention for their effectiveness in high-dimensional problems. However, many algorithms struggle with ensuring that the evolution of the density distribution adheres to the required mathematical constraints. This paper investigates a neural network approach to solving MFGs equilibria through a stochastic process perspective. It integrates process-regularized Normalizing Flow (NF) frameworks with state-policy-connected time-series neural networks to address McKean-Vlasov-type Forward-Backward Stochastic Differential Equation (MKV FBSDE) fixed-point problems, equivalent to MFGs equilibria.
Derm-T2IM: Harnessing Synthetic Skin Lesion Data via Stable Diffusion Models for Enhanced Skin Disease Classification using ViT and CNN
Farooq, Muhammad Ali, Yao, Wang, Schukat, Michael, Little, Mark A, Corcoran, Peter
This study explores the utilization of Dermatoscopic synthetic data generated through stable diffusion models as a strategy for enhancing the robustness of machine learning model training. Synthetic data generation plays a pivotal role in mitigating challenges associated with limited labeled datasets, thereby facilitating more effective model training. In this context, we aim to incorporate enhanced data transformation techniques by extending the recent success of few-shot learning and a small amount of data representation in text-to-image latent diffusion models. The optimally tuned model is further used for rendering high-quality skin lesion synthetic data with diverse and realistic characteristics, providing a valuable supplement and diversity to the existing training data. We investigate the impact of incorporating newly generated synthetic data into the training pipeline of state-of-art machine learning models, assessing its effectiveness in enhancing model performance and generalization to unseen real-world data. Our experimental results demonstrate the efficacy of the synthetic data generated through stable diffusion models helps in improving the robustness and adaptability of end-to-end CNN and vision transformer models on two different real-world skin lesion datasets.
Synthetic Speaking Children -- Why We Need Them and How to Make Them
Farooq, Muhammad Ali, Bigioi, Dan, Jain, Rishabh, Yao, Wang, Yiwere, Mariam, Corcoran, Peter
Contemporary Human Computer Interaction (HCI) research relies primarily on neural network models for machine vision and speech understanding of a system user. Such models require extensively annotated training datasets for optimal performance and when building interfaces for users from a vulnerable population such as young children, GDPR introduces significant complexities in data collection, management, and processing. Motivated by the training needs of an Edge AI smart toy platform this research explores the latest advances in generative neural technologies and provides a working proof of concept of a controllable data generation pipeline for speech driven facial training data at scale. In this context, we demonstrate how StyleGAN2 can be finetuned to create a gender balanced dataset of children's faces. This dataset includes a variety of controllable factors such as facial expressions, age variations, facial poses, and even speech-driven animations with realistic lip synchronization. By combining generative text to speech models for child voice synthesis and a 3D landmark based talking heads pipeline, we can generate highly realistic, entirely synthetic, talking child video clips. These video clips can provide valuable, and controllable, synthetic training data for neural network models, bridging the gap when real data is scarce or restricted due to privacy regulations.
Towards End-to-End Neural Face Authentication in the Wild -- Quantifying and Compensating for Directional Lighting Effects
Varkarakis, Viktor, Yao, Wang, Corcoran, Peter
The recent availability of low-power neural accelerator hardware, combined with improvements in end-to-end neural facial recognition algorithms provides, enabling technology for on-device facial authentication. The present research work examines the effects of directional lighting on a State-of-Art(SoA) neural face recognizer. A synthetic re-lighting technique is used to augment data samples due to the lack of public data-sets with sufficient directional lighting variations. Top lighting and its variants (top-left, top-right) are found to have minimal effect on accuracy, while bottom-left or bottom-right directional lighting has the most pronounced effects. Following the fine-tuning of network weights, the face recognition model is shown to achieve close to the original Receiver Operating Characteristic curve (ROC)performance across all lighting conditions and demonstrates an ability to generalize beyond the lighting augmentations used in the fine-tuning data-set. This work shows that an SoA neural face recognition model can be tuned to compensate for directional lighting effects, removing the need for a pre-processing step before applying facial recognition.