Yao, Ruichen
Modality Interactive Mixture-of-Experts for Fake News Detection
Liu, Yifan, Liu, Yaokun, Li, Zelin, Yao, Ruichen, Zhang, Yang, Wang, Dong
The proliferation of fake news on social media platforms disproportionately impacts vulnerable populations, eroding trust, exacerbating inequality, and amplifying harmful narratives. Detecting fake news in multimodal contexts -- where deceptive content combines text and images -- is particularly challenging due to the nuanced interplay between modalities. Existing multimodal fake news detection methods often emphasize cross-modal consistency but ignore the complex interactions between text and visual elements, which may complement, contradict, or independently influence the predicted veracity of a post. To address these challenges, we present Modality Interactive Mixture-of-Experts for Fake News Detection (MIMoE-FND), a novel hierarchical Mixture-of-Experts framework designed to enhance multimodal fake news detection by explicitly modeling modality interactions through an interaction gating mechanism. Our approach models modality interactions by evaluating two key aspects of modality interactions: unimodal prediction agreement and semantic alignment. The hierarchical structure of MIMoE-FND allows for distinct learning pathways tailored to different fusion scenarios, adapting to the unique characteristics of each modality interaction. By tailoring fusion strategies to diverse modality interaction scenarios, MIMoE-FND provides a more robust and nuanced approach to multimodal fake news detection. We evaluate our approach on three real-world benchmarks spanning two languages, demonstrating its superior performance compared to state-of-the-art methods. By enhancing the accuracy and interpretability of fake news detection, MIMoE-FND offers a promising tool to mitigate the spread of misinformation, with the potential to better safeguard vulnerable communities against its harmful effects.
Improving Fairness in Image Classification via Sketching
Yao, Ruichen, Cui, Ziteng, Li, Xiaoxiao, Gu, Lin
Fairness is a fundamental requirement for trustworthy and human-centered Artificial Intelligence (AI) system. However, deep neural networks (DNNs) tend to make unfair predictions when the training data are collected from different sub-populations with different attributes (i.e. color, sex, age), leading to biased DNN predictions. We notice that such a troubling phenomenon is often caused by data itself, which means that bias information is encoded to the DNN along with the useful information (i.e. class information, semantic information). Therefore, we propose to use sketching to handle this phenomenon. Without losing the utility of data, we explore the image-to-sketching methods that can maintain useful semantic information for the target classification while filtering out the useless bias information. In addition, we design a fair loss to further improve the model fairness. We evaluate our method through extensive experiments on both general scene dataset and medical scene dataset. Our results show that the desired image-to-sketching method improves model fairness and achieves satisfactory results among state-of-the-art.