Goto

Collaborating Authors

 Yao, Hongxun


MPBench: A Comprehensive Multimodal Reasoning Benchmark for Process Errors Identification

arXiv.org Artificial Intelligence

Reasoning is an essential capacity for large language models (LLMs) to address complex tasks, where the identification of process errors is vital for improving this ability. Recently, process-level reward models (PRMs) were proposed to provide step-wise rewards that facilitate reinforcement learning and data production during training and guide LLMs toward correct steps during inference, thereby improving reasoning accuracy. However, existing benchmarks of PRMs are text-based and focus on error detection, neglecting other scenarios like reasoning search. To address this gap, we introduce MPBench, a comprehensive, multi-task, multimodal benchmark designed to systematically assess the effectiveness of PRMs in diverse scenarios. MPBench employs three evaluation paradigms, each targeting a specific role of PRMs in the reasoning process: (1) Step Correctness, which assesses the correctness of each intermediate reasoning step; (2) Answer Aggregation, which aggregates multiple solutions and selects the best one; and (3) Reasoning Process Search, which guides the search for optimal reasoning steps during inference. Through these paradigms, MPBench makes comprehensive evaluations and provides insights into the development of multimodal PRMs.


Bridge then Begin Anew: Generating Target-relevant Intermediate Model for Source-free Visual Emotion Adaptation

arXiv.org Artificial Intelligence

Visual emotion recognition (VER), which aims at understanding humans' emotional reactions toward different visual stimuli, has attracted increasing attention. Given the subjective and ambiguous characteristics of emotion, annotating a reliable large-scale dataset is hard. For reducing reliance on data labeling, domain adaptation offers an alternative solution by adapting models trained on labeled source data to unlabeled target data. Conventional domain adaptation methods require access to source data. However, due to privacy concerns, source emotional data may be inaccessible. To address this issue, we propose an unexplored task: source-free domain adaptation (SFDA) for VER, which does not have access to source data during the adaptation process. To achieve this, we propose a novel framework termed Bridge then Begin Anew (BBA), which consists of two steps: domain-bridged model generation (DMG) and target-related model adaptation (TMA). First, the DMG bridges cross-domain gaps by generating an intermediate model, avoiding direct alignment between two VER datasets with significant differences. Then, the TMA begins training the target model anew to fit the target structure, avoiding the influence of source-specific knowledge. Extensive experiments are conducted on six SFDA settings for VER. The results demonstrate the effectiveness of BBA, which achieves remarkable performance gains compared with state-of-the-art SFDA methods and outperforms representative unsupervised domain adaptation approaches.


Dataset Growth

arXiv.org Artificial Intelligence

Meanwhile, efficiently dealing with the growing data scale has become a challenge. Data publicly available are from different sources with various qualities, and it is impractical to do manual cleaning against noise and redundancy given today's data scale. There are existing techniques for cleaning/selecting the collected data. However, these methods are mainly proposed for offline settings that target one of the cleanness and redundancy problems. In practice, data are growing exponentially with both problems. This leads to repeated data curation with sub-optimal efficiency. To tackle this challenge, we propose InfoGrowth, an efficient online algorithm for data cleaning and selection, resulting in a growing dataset that keeps up to date with awareness of cleanliness and diversity. InfoGrowth can improve data quality/efficiency on both single-modal and multi-modal tasks, with an efficient and scalable design. Its framework makes it practical for real-world data engines.


End-to-End Human Instance Matting

arXiv.org Artificial Intelligence

Human instance matting aims to estimate an alpha matte for each human instance in an image, which is extremely challenging and has rarely been studied so far. Despite some efforts to use instance segmentation to generate a trimap for each instance and apply trimap-based matting methods, the resulting alpha mattes are often inaccurate due to inaccurate segmentation. In addition, this approach is computationally inefficient due to multiple executions of the matting method. To address these problems, this paper proposes a novel End-to-End Human Instance Matting (E2E-HIM) framework for simultaneous multiple instance matting in a more efficient manner. Specifically, a general perception network first extracts image features and decodes instance contexts into latent codes. Then, a united guidance network exploits spatial attention and semantics embedding to generate united semantics guidance, which encodes the locations and semantic correspondences of all instances. Finally, an instance matting network decodes the image features and united semantics guidance to predict all instance-level alpha mattes. In addition, we construct a large-scale human instance matting dataset (HIM-100K) comprising over 100,000 human images with instance alpha matte labels. Experiments on HIM-100K demonstrate the proposed E2E-HIM outperforms the existing methods on human instance matting with 50% lower errors and 5X faster speed (6 instances in a 640X640 image). Experiments on the PPM-100, RWP-636, and P3M datasets demonstrate that E2E-HIM also achieves competitive performance on traditional human matting.


Affective Computing and Applications of Image Emotion Perceptions

AAAI Conferences

Images can convey rich semantics and evoke strong emotions in viewers. The research of my PhD thesis focuses on image emotion computing (IEC), which aims to predict the emotion perceptions of given images. The development of IEC is greatly constrained by two main challenges: affective gap and subjective evaluation. Previous works mainly focused on finding features that can express emotions better to bridge the affective gap, such as elements-of-art based features and shape features. According to the emotion representation models, including categorical emotion states (CES) and dimensional emotion space (DES), three different tasks are traditionally performed on IEC: affective image classification, regression and retrieval. The state-of-the-art methods on the three above tasks are image-centric, focusing on the dominant emotions for the majority of viewers. For my PhD thesis, I plan to answer the following questions: (1) Compared to the low-level elements-of-art based features, can we find some higher level features that are more interpretable and have stronger link to emotions? (2) Are the emotions that are evoked in viewers by an image subjective and different? If they are, how can we tackle the user-centric emotion prediction? (3) For image-centric emotion computing, can we predict the emotion distribution instead of the dominant emotion category?


User-Centric Affective Computing of Image Emotion Perceptions

AAAI Conferences

We propose to predict the personalized emotion perceptions of images for each viewer. Different factors that may influence emotion perceptions, including visual content, social context, temporal evolution, and location influence are jointly investigated via the presented rolling multi-task hypergraph learning. For evaluation, we set up a large scale image emotion dataset from Flickr, named Image-Emotion-Social-Net, with over 1 million images and about 8,000 users. Experiments conducted on this dataset demonstrate the superiority of the proposed method, as compared to state-of-the-art.