Yao, Feiyu
Adapting Large Language Models to Log Analysis with Interpretable Domain Knowledge
Ji, Yuhe, Liu, Yilun, Yao, Feiyu, He, Minggui, Tao, Shimin, Zhao, Xiaofeng, Chang, Su, Yang, Xinhua, Meng, Weibin, Xie, Yuming, Chen, Boxing, Yang, Hao
The increasing complexity of computer systems necessitates innovative approaches to fault and error management, going beyond traditional manual log analysis. While existing solutions using large language models (LLMs) show promise, they are limited by a gap between natural and domain-specific languages, which restricts their effectiveness in real-world applications. Our approach addresses these limitations by integrating interpretable domain knowledge into open-source LLMs through continual pre-training (CPT), enhancing performance on log tasks while retaining natural language processing capabilities. We created a comprehensive dataset, NLPLog, with over 250,000 question-answer pairs to facilitate this integration. Our model, SuperLog, trained with this dataset, achieves the best performance across four log analysis tasks, surpassing the second-best model by an average of 12.01%. Our contributions include a novel CPT paradigm that significantly improves model performance, the development of SuperLog with state-of-the-art results, and the release of a large-scale dataset to support further research in this domain.
Graph based Environment Representation for Vision-and-Language Navigation in Continuous Environments
Wang, Ting, Wu, Zongkai, Yao, Feiyu, Wang, Donglin
Vision-and-Language Navigation in Continuous Environments (VLN-CE) is a navigation task that requires an agent to follow a language instruction in a realistic environment. The understanding of environments is a crucial part of the VLN-CE task, but existing methods are relatively simple and direct in understanding the environment, without delving into the relationship between language instructions and visual environments. Therefore, we propose a new environment representation in order to solve the above problems. First, we propose an Environment Representation Graph (ERG) through object detection to express the environment in semantic level. This operation enhances the relationship between language and environment. Then, the relational representations of object-object, object-agent in ERG are learned through GCN, so as to obtain a continuous expression about ERG. Sequentially, we combine the ERG expression with object label embeddings to obtain the environment representation. Finally, a new cross-modal attention navigation framework is proposed, incorporating our environment representation and a special loss function dedicated to training ERG. Experimental result shows that our method achieves satisfactory performance in terms of success rate on VLN-CE tasks. Further analysis explains that our method attains better cross-modal matching and strong generalization ability.
Few-shot Domain Adaptation for IMU Denoising
Yao, Feiyu, Wu, Zongkai, Wei, Zhenyu, Wang, Donglin
Different application scenarios will cause IMU to exhibit different error characteristics which will cause trouble to robot application. However, most data processing methods need to be designed for specific scenario. To solve this problem, we propose a few-shot domain adaptation method. In this work, a domain adaptation framework is considered for denoising the IMU, a reconstitution loss is designed to improve domain adaptability. In addition, in order to further improve the adaptability in the case of limited data, a few-shot training strategy is adopted. In the experiment, we quantify our method on two datasets (EuRoC and TUM-VI) and two real robots (car and quadruped robot) with three different precision IMUs. According to the experimental results, the adaptability of our framework is verified by t-SNE. In orientation results, our proposed method shows the great denoising performance.