Goto

Collaborating Authors

 Yang Song



Constructing Unrestricted Adversarial Examples with Generative Models

Neural Information Processing Systems

Adversarial examples are typically constructed by perturbing an existing data point within a small matrix norm, and current defense methods are focused on guarding against this type of attack. In this paper, we propose unrestricted adversarial examples, a new threat model where the attackers are not restricted to small normbounded perturbations. Different from perturbation-based attacks, we propose to synthesize unrestricted adversarial examples entirely from scratch using conditional generative models. Specifically, we first train an Auxiliary Classifier Generative Adversarial Network (AC-GAN) to model the class-conditional distribution over data samples. Then, conditioned on a desired class, we search over the AC-GAN latent space to find images that are likely under the generative model and are misclassified by a target classifier. We demonstrate through human evaluation that unrestricted adversarial examples generated this way are legitimate and belong to the desired class. Our empirical results on the MNIST, SVHN, and CelebA datasets show that unrestricted adversarial examples can bypass strong adversarial training and certified defense methods designed for traditional adversarial attacks.


MintNet: Building Invertible Neural Networks with Masked Convolutions

Neural Information Processing Systems

We propose a new way of constructing invertible neural networks by combining simple building blocks with a novel set of composition rules. This leads to a rich set of invertible architectures, including those similar to ResNets. Inversion is achieved with a locally convergent iterative procedure that is parallelizable and very fast in practice. Additionally, the determinant of the Jacobian can be computed analytically and efficiently, enabling their generative use as flow models. To demonstrate their flexibility, we show that our invertible neural networks are competitive with ResNets on MNIST and CIFAR-10 classification. When trained as generative models, our invertible networks achieve competitive likelihoods on MNIST, CIFAR-10 and ImageNet 32 32, with bits per dimension of 0.98, 3.32 and 4.06 respectively.


Generative Modeling by Estimating Gradients of the Data Distribution

Neural Information Processing Systems

We introduce a new generative model where samples are produced via Langevin dynamics using gradients of the data distribution estimated with score matching. Because gradients can be ill-defined and hard to estimate when the data resides on low-dimensional manifolds, we perturb the data with different levels of Gaussian noise, and jointly estimate the corresponding scores, i.e., the vector fields of gradients of the perturbed data distribution for all noise levels. For sampling, we propose an annealed Langevin dynamics where we use gradients corresponding to gradually decreasing noise levels as the sampling process gets closer to the data manifold. Our framework allows flexible model architectures, requires no sampling during training or the use of adversarial methods, and provides a learning objective that can be used for principled model comparisons. Our models produce samples comparable to GANs on MNIST, CelebA and CIFAR-10 datasets, achieving a new state-of-the-art inception score of 8.87 on CIFAR-10. Additionally, we demonstrate that our models learn effective representations via image inpainting experiments.


Efficient Graph Generation with Graph Recurrent Attention Networks

Neural Information Processing Systems

We propose a new family of efficient and expressive deep generative models of graphs, called Graph Recurrent Attention Networks (GRANs). Our model generates graphs one block of nodes and associated edges at a time. The block size and sampling stride allow us to trade off sample quality for efficiency. Compared to previous RNN-based graph generative models, our framework better captures the auto-regressive conditioning between the already-generated and to-be-generated parts of the graph using Graph Neural Networks (GNNs) with attention. This not only reduces the dependency on node ordering but also bypasses the long-term bottleneck caused by the sequential nature of RNNs. Moreover, we parameterize the output distribution per block using a mixture of Bernoulli, which captures the correlations among generated edges within the block.


MintNet: Building Invertible Neural Networks with Masked Convolutions

Neural Information Processing Systems

We propose a new way of constructing invertible neural networks by combining simple building blocks with a novel set of composition rules. This leads to a rich set of invertible architectures, including those similar to ResNets. Inversion is achieved with a locally convergent iterative procedure that is parallelizable and very fast in practice. Additionally, the determinant of the Jacobian can be computed analytically and efficiently, enabling their generative use as flow models. To demonstrate their flexibility, we show that our invertible neural networks are competitive with ResNets on MNIST and CIFAR-10 classification. When trained as generative models, our invertible networks achieve competitive likelihoods on MNIST, CIFAR-10 and ImageNet 32 32, with bits per dimension of 0.98, 3.32 and 4.06 respectively.


Generative Modeling by Estimating Gradients of the Data Distribution

Neural Information Processing Systems

We introduce a new generative model where samples are produced via Langevin dynamics using gradients of the data distribution estimated with score matching. Because gradients can be ill-defined and hard to estimate when the data resides on low-dimensional manifolds, we perturb the data with different levels of Gaussian noise, and jointly estimate the corresponding scores, i.e., the vector fields of gradients of the perturbed data distribution for all noise levels. For sampling, we propose an annealed Langevin dynamics where we use gradients corresponding to gradually decreasing noise levels as the sampling process gets closer to the data manifold. Our framework allows flexible model architectures, requires no sampling during training or the use of adversarial methods, and provides a learning objective that can be used for principled model comparisons. Our models produce samples comparable to GANs on MNIST, CelebA and CIFAR-10 datasets, achieving a new state-of-the-art inception score of 8.87 on CIFAR-10. Additionally, we demonstrate that our models learn effective representations via image inpainting experiments.


Kernel Bayesian Inference with Posterior Regularization

Neural Information Processing Systems

We propose a vector-valued regression problem whose solution is equivalent to the reproducing kernel Hilbert space (RKHS) embedding of the Bayesian posterior distribution. This equivalence provides a new understanding of kernel Bayesian inference. Moreover, the optimization problem induces a new regularization for the posterior embedding estimator, which is faster and has comparable performance to the squared regularization in kernel Bayes' rule. This regularization coincides with a former thresholding approach used in kernel POMDPs whose consistency remains to be established. Our theoretical work solves this open problem and provides consistency analysis in regression settings. Based on our optimizational formulation, we propose a flexible Bayesian posterior regularization framework which for the first time enables us to put regularization at the distribution level. We apply this method to nonparametric state-space filtering tasks with extremely nonlinear dynamics and show performance gains over all other baselines.



Constructing Unrestricted Adversarial Examples with Generative Models

Neural Information Processing Systems

Adversarial examples are typically constructed by perturbing an existing data point within a small matrix norm, and current defense methods are focused on guarding against this type of attack. In this paper, we propose unrestricted adversarial examples, a new threat model where the attackers are not restricted to small normbounded perturbations. Different from perturbation-based attacks, we propose to synthesize unrestricted adversarial examples entirely from scratch using conditional generative models. Specifically, we first train an Auxiliary Classifier Generative Adversarial Network (AC-GAN) to model the class-conditional distribution over data samples. Then, conditioned on a desired class, we search over the AC-GAN latent space to find images that are likely under the generative model and are misclassified by a target classifier. We demonstrate through human evaluation that unrestricted adversarial examples generated this way are legitimate and belong to the desired class. Our empirical results on the MNIST, SVHN, and CelebA datasets show that unrestricted adversarial examples can bypass strong adversarial training and certified defense methods designed for traditional adversarial attacks.