Yang, Zhiwei
Towards Effective, Efficient and Unsupervised Social Event Detection in the Hyperbolic Space
Yu, Xiaoyan, Wei, Yifan, Zhou, Shuaishuai, Yang, Zhiwei, Sun, Li, Peng, Hao, Zhu, Liehuang, Yu, Philip S.
The vast, complex, and dynamic nature of social message data has posed challenges to social event detection (SED). Despite considerable effort, these challenges persist, often resulting in inadequately expressive message representations (ineffective) and prolonged learning durations (inefficient). In response to the challenges, this work introduces an unsupervised framework, HyperSED (Hyperbolic SED). Specifically, the proposed framework first models social messages into semantic-based message anchors, and then leverages the structure of the anchor graph and the expressiveness of the hyperbolic space to acquire structure- and geometry-aware anchor representations. Finally, HyperSED builds the partitioning tree of the anchor message graph by incorporating differentiable structural information as the reflection of the detected events. Extensive experiments on public datasets demonstrate HyperSED's competitive performance, along with a substantial improvement in efficiency compared to the current state-of-the-art unsupervised paradigm. Statistically, HyperSED boosts incremental SED by an average of 2%, 2%, and 25% in NMI, AMI, and ARI, respectively; enhancing efficiency by up to 37.41 times and at least 12.10 times, illustrating the advancement of the proposed framework. Our code is publicly available at https://github.com/XiaoyanWork/HyperSED.
Boosting ViT-based MRI Reconstruction from the Perspectives of Frequency Modulation, Spatial Purification, and Scale Diversification
Meng, Yucong, Yang, Zhiwei, Shi, Yonghong, Song, Zhijian
The accelerated MRI reconstruction process presents a challenging ill-posed inverse problem due to the extensive under-sampling in k-space. Recently, Vision Transformers (ViTs) have become the mainstream for this task, demonstrating substantial performance improvements. However, there are still three significant issues remain unaddressed: (1) ViTs struggle to capture high-frequency components of images, limiting their ability to detect local textures and edge information, thereby impeding MRI restoration; (2) Previous methods calculate multi-head self-attention (MSA) among both related and unrelated tokens in content, introducing noise and significantly increasing computational burden; (3) The naive feed-forward network in ViTs cannot model the multi-scale information that is important for image restoration. In this paper, we propose FPS-Former, a powerful ViT-based framework, to address these issues from the perspectives of frequency modulation, spatial purification, and scale diversification. Specifically, for issue (1), we introduce a frequency modulation attention module to enhance the self-attention map by adaptively re-calibrating the frequency information in a Laplacian pyramid. For issue (2), we customize a spatial purification attention module to capture interactions among closely related tokens, thereby reducing redundant or irrelevant feature representations. For issue (3), we propose an efficient feed-forward network based on a hybrid-scale fusion strategy. Comprehensive experiments conducted on three public datasets show that our FPS-Former outperforms state-of-the-art methods while requiring lower computational costs.
Continuous K-space Recovery Network with Image Guidance for Fast MRI Reconstruction
Meng, Yucong, Yang, Zhiwei, Duan, Minghong, Shi, Yonghong, Song, Zhijian
Magnetic resonance imaging (MRI) is a crucial tool for clinical diagnosis while facing the challenge of long scanning time. To reduce the acquisition time, fast MRI reconstruction aims to restore high-quality images from the undersampled k-space. Existing methods typically train deep learning models to map the undersampled data to artifact-free MRI images. However, these studies often overlook the unique properties of k-space and directly apply general networks designed for image processing to k-space recovery, leaving the precise learning of k-space largely underexplored. In this work, we propose a continuous k-space recovery network from a new perspective of implicit neural representation with image domain guidance, which boosts the performance of MRI reconstruction. Specifically, (1) an implicit neural representation based encoder-decoder structure is customized to continuously query unsampled k-values. (2) an image guidance module is designed to mine the semantic information from the low-quality MRI images to further guide the k-space recovery. (3) a multi-stage training strategy is proposed to recover dense k-space progressively. Extensive experiments conducted on CC359, fastMRI, and IXI datasets demonstrate the effectiveness of our method and its superiority over other competitors.
Explainable Fake News Detection With Large Language Model via Defense Among Competing Wisdom
Wang, Bo, Ma, Jing, Lin, Hongzhan, Yang, Zhiwei, Yang, Ruichao, Tian, Yuan, Chang, Yi
Most fake news detection methods learn latent feature representations based on neural networks, which makes them black boxes to classify a piece of news without giving any justification. Existing explainable systems generate veracity justifications from investigative journalism, which suffer from debunking delayed and low efficiency. Recent studies simply assume that the justification is equivalent to the majority opinions expressed in the wisdom of crowds. However, the opinions typically contain some inaccurate or biased information since the wisdom of crowds is uncensored. To detect fake news from a sea of diverse, crowded and even competing narratives, in this paper, we propose a novel defense-based explainable fake news detection framework. Specifically, we first propose an evidence extraction module to split the wisdom of crowds into two competing parties and respectively detect salient evidences. To gain concise insights from evidences, we then design a prompt-based module that utilizes a large language model to generate justifications by inferring reasons towards two possible veracities. Finally, we propose a defense-based inference module to determine veracity via modeling the defense among these justifications. Extensive experiments conducted on two real-world benchmarks demonstrate that our proposed method outperforms state-of-the-art baselines in terms of fake news detection and provides high-quality justifications.
WSDMS: Debunk Fake News via Weakly Supervised Detection of Misinforming Sentences with Contextualized Social Wisdom
Yang, Ruichao, Gao, Wei, Ma, Jing, Lin, Hongzhan, Yang, Zhiwei
In recent years, we witness the explosion of false and unconfirmed information (i.e., rumors) that went viral on social media and shocked the public. Rumors can trigger versatile, mostly controversial stance expressions among social media users. Rumor verification and stance detection are different yet relevant tasks. Fake news debunking primarily focuses on determining the truthfulness of news articles, which oversimplifies the issue as fake news often combines elements of both truth and falsehood. Thus, it becomes crucial to identify specific instances of misinformation within the articles. In this research, we investigate a novel task in the field of fake news debunking, which involves detecting sentence-level misinformation. One of the major challenges in this task is the absence of a training dataset with sentence-level annotations regarding veracity. Inspired by the Multiple Instance Learning (MIL) approach, we propose a model called Weakly Supervised Detection of Misinforming Sentences (WSDMS). This model only requires bag-level labels for training but is capable of inferring both sentence-level misinformation and article-level veracity, aided by relevant social media conversations that are attentively contextualized with news sentences. We evaluate WSDMS on three real-world benchmarks and demonstrate that it outperforms existing state-of-the-art baselines in debunking fake news at both the sentence and article levels.
Knowledge Extraction and Distillation from Large-Scale Image-Text Colonoscopy Records Leveraging Large Language and Vision Models
Wang, Shuo, Zhu, Yan, Luo, Xiaoyuan, Yang, Zhiwei, Zhang, Yizhe, Fu, Peiyao, Wang, Manning, Song, Zhijian, Li, Quanlin, Zhou, Pinghong, Guo, Yike
The development of artificial intelligence systems for colonoscopy analysis often necessitates expert-annotated image datasets. However, limitations in dataset size and diversity impede model performance and generalisation. Image-text colonoscopy records from routine clinical practice, comprising millions of images and text reports, serve as a valuable data source, though annotating them is labour-intensive. Here we leverage recent advancements in large language and vision models and propose EndoKED, a data mining paradigm for deep knowledge extraction and distillation. EndoKED automates the transformation of raw colonoscopy records into image datasets with pixel-level annotation. We validate EndoKED using multi-centre datasets of raw colonoscopy records (~1 million images), demonstrating its superior performance in training polyp detection and segmentation models. Furthermore, the EndoKED pre-trained vision backbone enables data-efficient and generalisable learning for optical biopsy, achieving expert-level performance in both retrospective and prospective validation.
A Unified Contrastive Transfer Framework with Propagation Structure for Boosting Low-Resource Rumor Detection
Lin, Hongzhan, Ma, Jing, Yang, Ruichao, Yang, Zhiwei, Cheng, Mingfei
The truth is significantly hampered by massive rumors that spread along with breaking news or popular topics. Since there is sufficient corpus gathered from the same domain for model training, existing rumor detection algorithms show promising performance on yesterday's news. However, due to a lack of substantial training data and prior expert knowledge, they are poor at spotting rumors concerning unforeseen events, especially those propagated in different languages (i.e., low-resource regimes). In this paper, we propose a unified contrastive transfer framework to detect rumors by adapting the features learned from well-resourced rumor data to that of the low-resourced with only few-shot annotations. More specifically, we first represent rumor circulated on social media as an undirected topology for enhancing the interaction of user opinions, and then train a Multi-scale Graph Convolutional Network via a unified contrastive paradigm to mine effective clues simultaneously from post semantics and propagation structure. Our model explicitly breaks the barriers of the domain and/or language issues, via language alignment and a novel domain-adaptive contrastive learning mechanism. To well-generalize the representation learning using a small set of annotated target events, we reveal that rumor-indicative signal is closely correlated with the uniformity of the distribution of these events. We design a target-wise contrastive training mechanism with three event-level data augmentation strategies, capable of unifying the representations by distinguishing target events. Extensive experiments conducted on four low-resource datasets collected from real-world microblog platforms demonstrate that our framework achieves much better performance than state-of-the-art methods and exhibits a superior capacity for detecting rumors at early stages.
The Sufficiency of Off-Policyness and Soft Clipping: PPO is still Insufficient according to an Off-Policy Measure
Chen, Xing, Diao, Dongcui, Chen, Hechang, Yao, Hengshuai, Piao, Haiyin, Sun, Zhixiao, Yang, Zhiwei, Goebel, Randy, Jiang, Bei, Chang, Yi
The popular Proximal Policy Optimization (PPO) algorithm approximates the solution in a clipped policy space. Does there exist better policies outside of this space? By using a novel surrogate objective that employs the sigmoid function (which provides an interesting way of exploration), we found that the answer is ``YES'', and the better policies are in fact located very far from the clipped space. We show that PPO is insufficient in ``off-policyness'', according to an off-policy metric called DEON. Our algorithm explores in a much larger policy space than PPO, and it maximizes the Conservative Policy Iteration (CPI) objective better than PPO during training. To the best of our knowledge, all current PPO methods have the clipping operation and optimize in the clipped policy space. Our method is the first of this kind, which advances the understanding of CPI optimization and policy gradient methods. Code is available at https://github.com/raincchio/P3O.
A Coarse-to-fine Cascaded Evidence-Distillation Neural Network for Explainable Fake News Detection
Yang, Zhiwei, Ma, Jing, Chen, Hechang, Lin, Hongzhan, Luo, Ziyang, Chang, Yi
Existing fake news detection methods aim to classify a piece of news as true or false and provide veracity explanations, achieving remarkable performances. However, they often tailor automated solutions on manual fact-checked reports, suffering from limited news coverage and debunking delays. When a piece of news has not yet been fact-checked or debunked, certain amounts of relevant raw reports are usually disseminated on various media outlets, containing the wisdom of crowds to verify the news claim and explain its verdict. In this paper, we propose a novel Coarse-to-fine Cascaded Evidence-Distillation (CofCED) neural network for explainable fake news detection based on such raw reports, alleviating the dependency on fact-checked ones. Specifically, we first utilize a hierarchical encoder for web text representation, and then develop two cascaded selectors to select the most explainable sentences for verdicts on top of the selected top-K reports in a coarse-to-fine manner. Besides, we construct two explainable fake news datasets, which are publicly available. Experimental results demonstrate that our model significantly outperforms state-of-the-art baselines and generates high-quality explanations from diverse evaluation perspectives.