Yang, Yuewei
Efficient Quantization Strategies for Latent Diffusion Models
Yang, Yuewei, Dai, Xiaoliang, Wang, Jialiang, Zhang, Peizhao, Zhang, Hongbo
Latent Diffusion Models (LDMs) capture the dynamic evolution of latent variables over time, blending patterns and multimodality in a generative system. Despite the proficiency of LDM in various applications, such as text-to-image generation, facilitated by robust text encoders and a variational autoencoder, the critical need to deploy large generative models on edge devices compels a search for more compact yet effective alternatives. Post Training Quantization (PTQ), a method to compress the operational size of deep learning models, encounters challenges when applied to LDM due to temporal and structural complexities. This study proposes a quantization strategy that efficiently quantize LDMs, leveraging Signal-to-Quantization-Noise Ratio (SQNR) as a pivotal metric for evaluation. By treating the quantization discrepancy as relative noise and identifying sensitive part(s) of a model, we propose an efficient quantization approach encompassing both global and local strategies. The global quantization process mitigates relative quantization noise by initiating higher-precision quantization on sensitive blocks, while local treatments address specific challenges in quantization-sensitive and time-sensitive modules. The outcomes of our experiments reveal that the implementation of both global and local treatments yields a highly efficient and effective Post Training Quantization (PTQ) of LDMs.
Tight Mutual Information Estimation With Contrastive Fenchel-Legendre Optimization
Guo, Qing, Chen, Junya, Wang, Dong, Yang, Yuewei, Deng, Xinwei, Carin, Lawrence, Li, Fan, Tao, Chenyang
Successful applications of InfoNCE and its variants have popularized the use of contrastive variational mutual information (MI) estimators in machine learning. While featuring superior stability, these estimators crucially depend on costly large-batch training, and they sacrifice bound tightness for variance reduction. To overcome these limitations, we revisit the mathematics of popular variational MI bounds from the lens of unnormalized statistical modeling and convex optimization. Our investigation not only yields a new unified theoretical framework encompassing popular variational MI bounds but also leads to a novel, simple, and powerful contrastive MI estimator named as FLO. Theoretically, we show that the FLO estimator is tight, and it provably converges under stochastic gradient descent. Empirically, our FLO estimator overcomes the limitations of its predecessors and learns more efficiently. The utility of FLO is verified using an extensive set of benchmarks, which also reveals the trade-offs in practical MI estimation.
Proactive Pseudo-Intervention: Causally Informed Contrastive Learning For Interpretable Vision Models
Wang, Dong, Yang, Yuewei, Tao, Chenyang, Kong, Fanjie, Henao, Ricardo, Carin, Lawrence
Deep neural networks have shown significant promise in comprehending complex visual signals, delivering performance on par or even superior to that of human experts. However, these models often lack a mechanism for interpreting their predictions, and in some cases, particularly when the sample size is small, existing deep learning solutions tend to capture spurious correlations that compromise model generalizability on unseen inputs. In this work, we propose a contrastive causal representation learning strategy that leverages proactive interventions to identify causally-relevant image features, called Proactive Pseudo-Intervention (PPI). This approach is complemented with a causal salience map visualization module, i.e., Weight Back Propagation (WBP), that identifies important pixels in the raw input image, which greatly facilitates the interpretability of predictions. To validate its utility, our model is benchmarked extensively on both standard natural images and challenging medical image datasets. We show this new contrastive causal representation learning model consistently improves model performance relative to competing solutions, particularly for out-of-domain predictions or when dealing with data integration from heterogeneous sources. Further, our causal saliency maps are more succinct and meaningful relative to their non-causal counterparts.