Goto

Collaborating Authors

 Yang, Yiyuan


Time-MQA: Time Series Multi-Task Question Answering with Context Enhancement

arXiv.org Artificial Intelligence

Time series data are foundational in finance, healthcare, and energy domains. However, most existing methods and datasets remain focused on a narrow spectrum of tasks, such as forecasting or anomaly detection. To bridge this gap, we introduce Time Series Multi-Task Question Answering (Time-MQA), a unified framework that enables natural language queries across multiple time series tasks - numerical analytical tasks and open-ended question answering with reasoning. Central to Time-MQA is the TSQA dataset, a large-scale dataset containing $\sim$200k question-answer pairs derived from diverse time series spanning environment, traffic, etc. This comprehensive resource covers various time series lengths and promotes robust model development. We further demonstrate how continually pre-training large language models (Mistral 7B, Llama-3 8B, and Qwen-2.5 7B) on the TSQA dataset enhanced time series reasoning capabilities, moving beyond mere numeric tasks and enabling more advanced and intuitive interactions with temporal data. The complete TSQA dataset, models, executable codes, user study questionnaires for evaluation, and results have all been open-sourced.


Target Speaker Extraction through Comparing Noisy Positive and Negative Audio Enrollments

arXiv.org Artificial Intelligence

Target speaker extraction focuses on isolating a specific speaker's voice from an audio mixture containing multiple speakers. To provide information about the target speaker's identity, prior works have utilized clean audio examples as conditioning inputs. However, such clean audio examples are not always readily available (e.g. It is impractical to obtain a clean audio example of a stranger's voice at a cocktail party without stepping away from the noisy environment). Limited prior research has explored extracting the target speaker's characteristics from noisy audio examples, which may include overlapping speech from disturbing speakers. In this work, we focus on target speaker extraction when multiple speakers are present during the enrollment stage, through leveraging differences between audio segments where the target speakers are speaking (Positive Enrollments) and segments where they are not (Negative Enrollments). Experiments show the effectiveness of our model architecture and the dedicated pretraining method for the proposed task. Our method achieves state-of-the-art performance in the proposed application settings and demonstrates strong generalizability across challenging and realistic scenarios.


Position: Empowering Time Series Reasoning with Multimodal LLMs

arXiv.org Artificial Intelligence

Understanding time series data is crucial for multiple real-world applications. While large language models (LLMs) show promise in time series tasks, current approaches often rely on numerical data alone, overlooking the multimodal nature of time-dependent information, such as textual descriptions, visual data, and audio signals. Moreover, these methods underutilize LLMs' reasoning capabilities, limiting the analysis to surface-level interpretations instead of deeper temporal and multimodal reasoning. In this position paper, we argue that multimodal LLMs (MLLMs) can enable more powerful and flexible reasoning for time series analysis, enhancing decision-making and real-world applications. We call on researchers and practitioners to leverage this potential by developing strategies that prioritize trust, interpretability, and robust reasoning in MLLMs. Lastly, we highlight key research directions, including novel reasoning paradigms, architectural innovations, and domain-specific applications, to advance time series reasoning with MLLMs.


Intelligent Cross-Organizational Process Mining: A Survey and New Perspectives

arXiv.org Artificial Intelligence

Process mining, as a high-level field in data mining, plays a crucial role in enhancing operational efficiency and decision-making across organizations. In this survey paper, we delve into the growing significance and ongoing trends in the field of process mining, advocating a specific viewpoint on its contents, application, and development in modern businesses and process management, particularly in cross-organizational settings. We first summarize the framework of process mining, common industrial applications, and the latest advances combined with artificial intelligence, such as workflow optimization, compliance checking, and performance analysis. Then, we propose a holistic framework for intelligent process analysis and outline initial methodologies in cross-organizational settings, highlighting both challenges and opportunities. This particular perspective aims to revolutionize process mining by leveraging artificial intelligence to offer sophisticated solutions for complex, multi-organizational data analysis. By integrating advanced machine learning techniques, we can enhance predictive capabilities, streamline processes, and facilitate real-time decision-making. Furthermore, we pinpoint avenues for future investigations within the research community, encouraging the exploration of innovative algorithms, data integration strategies, and privacy-preserving methods to fully harness the potential of process mining in diverse, interconnected business environments.


DACAD: Domain Adaptation Contrastive Learning for Anomaly Detection in Multivariate Time Series

arXiv.org Artificial Intelligence

In time series anomaly detection (TSAD), the scarcity of labeled data poses a challenge to the development of accurate models. Unsupervised domain adaptation (UDA) offers a solution by leveraging labeled data from a related domain to detect anomalies in an unlabeled target domain. However, existing UDA methods assume consistent anomalous classes across domains. To address this limitation, we propose a novel Domain Adaptation Contrastive learning model for Anomaly Detection in multivariate time series (DACAD), combining UDA with contrastive learning. DACAD utilizes an anomaly injection mechanism that enhances generalization across unseen anomalous classes, improving adaptability and robustness. Additionally, our model employs supervised contrastive loss for the source domain and self-supervised contrastive triplet loss for the target domain, ensuring comprehensive feature representation learning and domain-invariant feature extraction. Finally, an effective Centre-based Entropy Classifier (CEC) accurately learns normal boundaries in the source domain. Extensive evaluations on multiple real-world datasets and a synthetic dataset highlight DACAD's superior performance in transferring knowledge across domains and mitigating the challenge of limited labeled data in TSAD.


TSI-Bench: Benchmarking Time Series Imputation

arXiv.org Artificial Intelligence

Effective imputation is a crucial preprocessing step for time series analysis. Despite the development of numerous deep learning algorithms for time series imputation, the community lacks standardized and comprehensive benchmark platforms to effectively evaluate imputation performance across different settings. Moreover, although many deep learning forecasting algorithms have demonstrated excellent performance, whether their modeling achievements can be transferred to time series imputation tasks remains unexplored. To bridge these gaps, we develop TSI-Bench, the first (to our knowledge) comprehensive benchmark suite for time series imputation utilizing deep learning techniques. The TSI-Bench pipeline standardizes experimental settings to enable fair evaluation of imputation algorithms and identification of meaningful insights into the influence of domain-appropriate missingness ratios and patterns on model performance. Furthermore, TSI-Bench innovatively provides a systematic paradigm to tailor time series forecasting algorithms for imputation purposes. Our extensive study across 34,804 experiments, 28 algorithms, and 8 datasets with diverse missingness scenarios demonstrates TSI-Bench's effectiveness in diverse downstream tasks and potential to unlock future directions in time series imputation research and analysis.


Pre-training Feature Guided Diffusion Model for Speech Enhancement

arXiv.org Artificial Intelligence

Speech enhancement significantly improves the clarity and intelligibility of speech in noisy environments, improving communication and listening experiences. In this paper, we introduce a novel pretraining feature-guided diffusion model tailored for efficient speech enhancement, addressing the limitations of existing discriminative and generative models. By integrating spectral features into a variational autoencoder (VAE) and leveraging pre-trained features for guidance during the reverse process, coupled with the utilization of the deterministic discrete integration method (DDIM) to streamline sampling steps, our model improves efficiency and speech enhancement quality. Demonstrating state-of-the-art results on two public datasets with different SNRs, our model outshines other baselines in efficiency and robustness. The proposed method not only optimizes performance but also enhances practical deployment capabilities, without increasing computational demands.


A Survey on Diffusion Models for Time Series and Spatio-Temporal Data

arXiv.org Artificial Intelligence

The study of time series is crucial for understanding trends and anomalies over time, enabling predictive insights across various sectors. Spatio-temporal data, on the other hand, is vital for analyzing phenomena in both space and time, providing a dynamic perspective on complex system interactions. Recently, diffusion models have seen widespread application in time series and spatio-temporal data mining. Not only do they enhance the generative and inferential capabilities for sequential and temporal data, but they also extend to other downstream tasks. In this survey, we comprehensively and thoroughly review the use of diffusion models in time series and spatio-temporal data, categorizing them by model category, task type, data modality, and practical application domain. In detail, we categorize diffusion models into unconditioned and conditioned types and discuss time series and spatio-temporal data separately. Unconditioned models, which operate unsupervised, are subdivided into probability-based and score-based models, serving predictive and generative tasks such as forecasting, anomaly detection, classification, and imputation. Conditioned models, on the other hand, utilize extra information to enhance performance and are similarly divided for both predictive and generative tasks. Our survey extensively covers their application in various fields, including healthcare, recommendation, climate, energy, audio, and transportation, providing a foundational understanding of how these models analyze and generate data. Through this structured overview, we aim to provide researchers and practitioners with a comprehensive understanding of diffusion models for time series and spatio-temporal data analysis, aiming to direct future innovations and applications by addressing traditional challenges and exploring innovative solutions within the diffusion model framework.


Unveiling the Secrets: How Masking Strategies Shape Time Series Imputation

arXiv.org Machine Learning

In this study, we explore the impact of different masking strategies on time series imputation models. We evaluate the effects of pre-masking versus in-mini-batch masking, normalization timing, and the choice between augmenting and overlaying artificial missingness. Using three diverse datasets, we benchmark eleven imputation models with different missing rates. Our results demonstrate that masking strategies significantly influence imputation accuracy, revealing that more sophisticated and data-driven masking designs are essential for robust model evaluation. We advocate for refined experimental designs and comprehensive disclosureto better simulate real-world patterns, enhancing the practical applicability of imputation models.


Dual-Personalizing Adapter for Federated Foundation Models

arXiv.org Artificial Intelligence

Recently, foundation models, particularly large language models (LLMs), have demonstrated an impressive ability to adapt to various tasks by fine-tuning large amounts of instruction data. Notably, federated foundation models emerge as a privacy preservation method to fine-tune models collaboratively under federated learning (FL) settings by leveraging many distributed datasets with non-IID data. To alleviate communication and computation overhead, parameter-efficient methods are introduced for efficiency, and some research adapted personalization methods to federated foundation models for better user preferences alignment. However, a critical gap in existing research is the neglect of test-time distribution shifts in real-world applications. Therefore, to bridge this gap, we propose a new setting, termed test-time personalization, which not only concentrates on the targeted local task but also extends to other tasks that exhibit test-time distribution shifts. To address challenges in this new setting, we explore a simple yet effective solution to learn a comprehensive foundation model. Specifically, a dual-personalizing adapter architecture (FedDPA) is proposed, comprising a global adapter and a local adapter for addressing test-time distribution shifts and personalization, respectively. Additionally, we introduce an instance-wise dynamic weighting mechanism to optimize the balance between the global and local adapters, enhancing overall performance. The effectiveness of the proposed method has been evaluated on benchmark datasets across different NLP tasks.