Goto

Collaborating Authors

 Yang, Yimin


Semantic Encoder Guided Generative Adversarial Face Ultra-Resolution Network

arXiv.org Artificial Intelligence

Face super-resolution is a domain-specific image super-resolution, which aims to generate High-Resolution (HR) face images from their Low-Resolution (LR) counterparts. In this paper, we propose a novel face super-resolution method, namely Semantic Encoder guided Generative Adversarial Face Ultra-Resolution Network (SEGA-FURN) to ultra-resolve an unaligned tiny LR face image to its HR counterpart with multiple ultra-upscaling factors (e.g., 4x and 8x). The proposed network is composed of a novel semantic encoder that has the ability to capture the embedded semantics to guide adversarial learning and a novel generator that uses a hierarchical architecture named Residual in Internal Dense Block (RIDB). Moreover, we propose a joint discriminator which discriminates both image data and embedded semantics. The joint discriminator learns the joint probability distribution of the image space and latent space. We also use a Relativistic average Least Squares loss (RaLS) as the adversarial loss to alleviate the gradient vanishing problem and enhance the stability of the training procedure. Extensive experiments on large face datasets have proved that the proposed method can achieve superior super-resolution results and significantly outperform other state-of-the-art methods in both qualitative and quantitative comparisons.


Real-World Image Super Resolution via Unsupervised Bi-directional Cycle Domain Transfer Learning based Generative Adversarial Network

arXiv.org Artificial Intelligence

Deep Convolutional Neural Networks (DCNNs) have exhibited impressive performance on image super-resolution tasks. However, these deep learning-based super-resolution methods perform poorly in real-world super-resolution tasks, where the paired high-resolution and low-resolution images are unavailable and the low-resolution images are degraded by complicated and unknown kernels. To break these limitations, we propose the Unsupervised Bi-directional Cycle Domain Transfer Learning-based Generative Adversarial Network (UBCDTL-GAN), which consists of an Unsupervised Bi-directional Cycle Domain Transfer Network (UBCDTN) and the Semantic Encoder guided Super Resolution Network (SESRN). First, the UBCDTN is able to produce an approximated real-like LR image through transferring the LR image from an artificially degraded domain to the real-world LR image domain. Second, the SESRN has the ability to super-resolve the approximated real-like LR image to a photo-realistic HR image. Extensive experiments on unpaired real-world image benchmark datasets demonstrate that the proposed method achieves superior performance compared to state-of-the-art methods.


Deconvolution-and-convolution Networks

arXiv.org Artificial Intelligence

Recent findings, however, suggest that CNN may not be the best option for 1D pattern recognition, especially for datasets with over 1 M training samples, e.g., existing CNN-based methods for 1D signals are highly reliant on human pre-processing. Common practices include utilizing discrete Fourier transform (DFT) to reconstruct 1D signal into 2D array. To add to extant knowledge, in this paper, a novel 1D data processing algorithm is proposed for 1D big data analysis through learning a deep deconvolutional-convolutional network. Rather than resorting to human-based techniques, we employed deconvolution layers to convert 1 D signals into 2D data. On top of the deconvolution model, the data was identified by a 2D CNN. Compared with the existing 1D signal processing algorithms, DCNet boasts the advantages of less human-made inference and higher generalization performance. Our experimental results from a varying number of training patterns (50 K to 11 M) from classification and regression demonstrate the desirability of our new approach.


Non-iterative recomputation of dense layers for performance improvement of DCNN

arXiv.org Machine Learning

An iterative method of learning has become a paradigm for training deep convolutional neural networks (DCNN). However, utilizing a non-iterative learning strategy can accelerate the training process of the DCNN and surprisingly such approach has been rarely explored by the deep learning (DL) community. It motivates this paper to introduce a non-iterative learning strategy that eliminates the backpropagation (BP) at the top dense or fully connected (FC) layers of DCNN, resulting in, lower training time and higher performance. The proposed method exploits the Moore-Penrose Inverse to pull back the current residual error to each FC layer, generating well-generalized features. Then using the recomputed features, i.e., the new generalized features the weights of each FC layer is computed according to the Moore-Penrose Inverse. We evaluate the proposed approach on six widely accepted object recognition benchmark datasets: Scene-15, CIFAR-10, CIFAR-100, SUN-397, Places365, and ImageNet. The experimental results show that the proposed method obtains significant improvements over 30 state-of-the-art methods. Interestingly, it also indicates that any DCNN with the proposed method can provide better performance than the same network with its original training based on BP.