Yang, Yaming
Unsupervised Entity Alignment Based on Personalized Discriminative Rooted Tree
Yang, Yaming, Wang, Zhe, Guan, Ziyu, Zhao, Wei, Huang, Xinyan, He, Xiaofei
Entity Alignment (EA) is to link potential equivalent entities across different knowledge graphs (KGs). Most existing EA methods are supervised as they require the supervision of seed alignments, i.e., manually specified aligned entity pairs. Very recently, several EA studies have made some attempts to get rid of seed alignments. Despite achieving preliminary progress, they still suffer two limitations: (1) The entity embeddings produced by their GNN-like encoders lack personalization since some of the aggregation subpaths are shared between different entities. (2) They cannot fully alleviate the distribution distortion issue between candidate KGs due to the absence of the supervised signal. In this work, we propose a novel unsupervised entity alignment approach called UNEA to address the above two issues. First, we parametrically sample a tree neighborhood rooted at each entity, and accordingly develop a tree attention aggregation mechanism to extract a personalized embedding for each entity. Second, we introduce an auxiliary task of maximizing the mutual information between the input and the output of the KG encoder, to regularize the model and prevent the distribution distortion. Extensive experiments show that our UNEA achieves a new state-of-the-art for the unsupervised EA task, and can even outperform many existing supervised EA baselines.
AGMixup: Adaptive Graph Mixup for Semi-supervised Node Classification
Lu, Weigang, Guan, Ziyu, Zhao, Wei, Yang, Yaming, Zhan, Yibing, Lu, Yiheng, Tao, Dapeng
Mixup is a data augmentation technique that enhances model generalization by interpolating between data points using a mixing ratio $\lambda$ in the image domain. Recently, the concept of mixup has been adapted to the graph domain through node-centric interpolations. However, these approaches often fail to address the complexity of interconnected relationships, potentially damaging the graph's natural topology and undermining node interactions. Furthermore, current graph mixup methods employ a one-size-fits-all strategy with a randomly sampled $\lambda$ for all mixup pairs, ignoring the diverse needs of different pairs. This paper proposes an Adaptive Graph Mixup (AGMixup) framework for semi-supervised node classification. AGMixup introduces a subgraph-centric approach, which treats each subgraph similarly to how images are handled in Euclidean domains, thus facilitating a more natural integration of mixup into graph-based learning. We also propose an adaptive mechanism to tune the mixing ratio $\lambda$ for diverse mixup pairs, guided by the contextual similarity and uncertainty of the involved subgraphs. Extensive experiments across seven datasets on semi-supervised node classification benchmarks demonstrate AGMixup's superiority over state-of-the-art graph mixup methods. Source codes are available at \url{https://github.com/WeigangLu/AGMixup}.
StreamAdapter: Efficient Test Time Adaptation from Contextual Streams
Muhtar, Dilxat, Shen, Yelong, Yang, Yaming, Liu, Xiaodong, Lu, Yadong, Liu, Jianfeng, Zhan, Yuefeng, Sun, Hao, Deng, Weiwei, Sun, Feng, Zhang, Xueliang, Gao, Jianfeng, Chen, Weizhu, Zhang, Qi
In-context learning (ICL) allows large language models (LLMs) to adapt to new tasks directly from the given demonstrations without requiring gradient updates. While recent advances have expanded context windows to accommodate more demonstrations, this approach increases inference costs without necessarily improving performance. To mitigate these issues, We propose StreamAdapter, a novel approach that directly updates model parameters from context at test time, eliminating the need for explicit in-context demonstrations. StreamAdapter employs context mapping and weight absorption mechanisms to dynamically transform ICL demonstrations into parameter updates with minimal additional parameters. By reducing reliance on numerous in-context examples, StreamAdapter significantly reduce inference costs and allows for efficient inference with constant time complexity, regardless of demonstration count. Extensive experiments across diverse tasks and model architectures demonstrate that StreamAdapter achieves comparable or superior adaptation capability to ICL while requiring significantly fewer demonstrations. The superior task adaptation and context encoding capabilities of StreamAdapter on both language understanding and generation tasks provides a new perspective for adapting LLMs at test time using context, allowing for more efficient adaptation across scenarios and more cost-effective inference.
Token-level Proximal Policy Optimization for Query Generation
Ouyang, Yichen, Wang, Lu, Yang, Fangkai, Zhao, Pu, Huang, Chenghua, Liu, Jianfeng, Pang, Bochen, Yang, Yaming, Zhan, Yuefeng, Sun, Hao, Lin, Qingwei, Rajmohan, Saravan, Deng, Weiwei, Zhang, Dongmei, Sun, Feng, Zhang, Qi
Query generation is a critical task for web search engines (e.g. Google, Bing) and recommendation systems. Recently, state-of-the-art query generation methods leverage Large Language Models (LLMs) for their strong capabilities in context understanding and text generation. However, they still face challenges in generating high-quality queries in terms of inferring user intent based on their web search interaction history. In this paper, we propose Token-level Proximal Policy Optimization (TPPO), a noval approach designed to empower LLMs perform better in query generation through fine-tuning. TPPO is based on the Reinforcement Learning from AI Feedback (RLAIF) paradigm, consisting of a token-level reward model and a token-level proximal policy optimization module to address the sparse reward challenge in traditional RLAIF frameworks. To evaluate the effectiveness and robustness of TPPO, we conducted experiments on both open-source dataset and an industrial dataset that was collected from a globally-used search engine. The experimental results demonstrate that TPPO significantly improves the performance of query generation for LLMs and outperforms its existing competitors.
MTL-LoRA: Low-Rank Adaptation for Multi-Task Learning
Yang, Yaming, Muhtar, Dilxat, Shen, Yelong, Zhan, Yuefeng, Liu, Jianfeng, Wang, Yujing, Sun, Hao, Deng, Denvy, Sun, Feng, Zhang, Qi, Chen, Weizhu, Tong, Yunhai
Parameter-efficient fine-tuning (PEFT) has been widely employed for domain adaptation, with LoRA being one of the most prominent methods due to its simplicity and effectiveness. However, in multi-task learning (MTL) scenarios, LoRA tends to obscure the distinction between tasks by projecting sparse high-dimensional features from different tasks into the same dense low-dimensional intrinsic space. This leads to task interference and suboptimal performance for LoRA and its variants. To tackle this challenge, we propose MTL-LoRA, which retains the advantages of low-rank adaptation while significantly enhancing multi-task learning capabilities. MTL-LoRA augments LoRA by incorporating additional task-adaptive parameters that differentiate task-specific information and effectively capture shared knowledge across various tasks within low-dimensional spaces. This approach enables large language models (LLMs) pre-trained on general corpus to adapt to different target task domains with a limited number of trainable parameters. Comprehensive experimental results, including evaluations on public academic benchmarks for natural language understanding, commonsense reasoning, and image-text understanding, as well as real-world industrial text Ads relevance datasets, demonstrate that MTL-LoRA outperforms LoRA and its various variants with comparable or even fewer learnable parameters in multitask learning.
AdaGMLP: AdaBoosting GNN-to-MLP Knowledge Distillation
Lu, Weigang, Guan, Ziyu, Zhao, Wei, Yang, Yaming
Graph Neural Networks (GNNs) have revolutionized graph-based machine learning, but their heavy computational demands pose challenges for latency-sensitive edge devices in practical industrial applications. In response, a new wave of methods, collectively known as GNN-to-MLP Knowledge Distillation, has emerged. They aim to transfer GNN-learned knowledge to a more efficient MLP student, which offers faster, resource-efficient inference while maintaining competitive performance compared to GNNs. However, these methods face significant challenges in situations with insufficient training data and incomplete test data, limiting their applicability in real-world applications. To address these challenges, we propose AdaGMLP, an AdaBoosting GNN-to-MLP Knowledge Distillation framework. It leverages an ensemble of diverse MLP students trained on different subsets of labeled nodes, addressing the issue of insufficient training data. Additionally, it incorporates a Node Alignment technique for robust predictions on test data with missing or incomplete features. Our experiments on seven benchmark datasets with different settings demonstrate that AdaGMLP outperforms existing G2M methods, making it suitable for a wide range of latency-sensitive real-world applications. We have submitted our code to the GitHub repository (https://github.com/WeigangLu/AdaGMLP-KDD24).
Deep Learning-Based Detection for Marker Codes over Insertion and Deletion Channels
Ma, Guochen, Jiao, Xiaopeng, Mu, Jianjun, Han, Hui, Yang, Yaming
Marker code is an effective coding scheme to protect data from insertions and deletions. It has potential applications in future storage systems, such as DNA storage and racetrack memory. When decoding marker codes, perfect channel state information (CSI), i.e., insertion and deletion probabilities, are required to detect insertion and deletion errors. Sometimes, the perfect CSI is not easy to obtain or the accurate channel model is unknown. Therefore, it is deserved to develop detecting algorithms for marker code without the knowledge of perfect CSI. In this paper, we propose two CSI-agnostic detecting algorithms for marker code based on deep learning. The first one is a model-driven deep learning method, which deep unfolds the original iterative detecting algorithm of marker code. In this method, CSI become weights in neural networks and these weights can be learned from training data. The second one is a data-driven method which is an end-to-end system based on the deep bidirectional gated recurrent unit network. Simulation results show that error performances of the proposed methods are significantly better than that of the original detection algorithm with CSI uncertainty. Furthermore, the proposed data-driven method exhibits better error performances than other methods for unknown channel models.
NodeMixup: Tackling Under-Reaching for Graph Neural Networks
Lu, Weigang, Guan, Ziyu, Zhao, Wei, Yang, Yaming, Jin, Long
Graph Neural Networks (GNNs) have become mainstream methods for solving the semi-supervised node classification problem. However, due to the uneven location distribution of labeled nodes in the graph, labeled nodes are only accessible to a small portion of unlabeled nodes, leading to the \emph{under-reaching} issue. In this study, we firstly reveal under-reaching by conducting an empirical investigation on various well-known graphs. Then, we demonstrate that under-reaching results in unsatisfactory distribution alignment between labeled and unlabeled nodes through systematic experimental analysis, significantly degrading GNNs' performance. To tackle under-reaching for GNNs, we propose an architecture-agnostic method dubbed NodeMixup. The fundamental idea is to (1) increase the reachability of labeled nodes by labeled-unlabeled pairs mixup, (2) leverage graph structures via fusing the neighbor connections of intra-class node pairs to improve performance gains of mixup, and (3) use neighbor label distribution similarity incorporating node degrees to determine sampling weights for node mixup. Extensive experiments demonstrate the efficacy of NodeMixup in assisting GNNs in handling under-reaching. The source code is available at \url{https://github.com/WeigangLu/NodeMixup}.
Pseudo Contrastive Learning for Graph-based Semi-supervised Learning
Lu, Weigang, Guan, Ziyu, Zhao, Wei, Yang, Yaming, Lv, Yuanhai, Xing, Lining, Yu, Baosheng, Tao, Dacheng
Pseudo Labeling is a technique used to improve the performance of semi-supervised Graph Neural Networks (GNNs) by generating additional pseudo-labels based on confident predictions. However, the quality of generated pseudo-labels has been a longstanding concern due to the sensitivity of the classification objective with respect to the given labels. To avoid the untrustworthy classification supervision indicating ``a node belongs to a specific class,'' we favor the fault-tolerant contrasting supervision demonstrating ``two nodes do not belong to the same class.'' Thus, the problem of generating high-quality pseudo-labels is then transformed into a relaxed version, i.e., identifying reliable negative pairs. To achieve this, we propose a general framework for GNNs, termed Pseudo Contrastive Learning (PCL). It separates two nodes whose positive and negative pseudo-labels target the same class. To incorporate topological knowledge into learning, we devise a topologically weighted contrastive loss that spends more effort separating negative pairs with smaller topological distances. Experimentally, we apply PCL to various GNNs, which consistently outperform their counterparts using other popular general techniques on five real-world graphs.
Convolution-enhanced Evolving Attention Networks
Wang, Yujing, Yang, Yaming, Li, Zhuo, Bai, Jiangang, Zhang, Mingliang, Li, Xiangtai, Yu, Jing, Zhang, Ce, Huang, Gao, Tong, Yunhai
Attention-based neural networks, such as Transformers, have become ubiquitous in numerous applications, including computer vision, natural language processing, and time-series analysis. In all kinds of attention networks, the attention maps are crucial as they encode semantic dependencies between input tokens. However, most existing attention networks perform modeling or reasoning based on representations , wherein the attention maps of different layers are learned separately without explicit interactions. In this paper, we propose a novel and generic evolving attention mechanism, which directly models the evolution of inter-token relationships through a chain of residual convolutional modules. The major motivations are twofold. On the one hand, the attention maps in different layers share transferable knowledge, thus adding a residual connection can facilitate the information flow of inter-token relationships across layers. On the other hand, there is naturally an evolutionary trend among attention maps at different abstraction levels, so it is beneficial to exploit a dedicated convolution-based module to capture this process. Equipped with the proposed mechanism, the convolution-enhanced evolving attention networks achieve superior performance in various applications, including time-series representation, natural language understanding, machine translation, and image classification. Especially on time-series representation tasks, Evolving Attention-enhanced Dilated Convolutional (EA-DC-) Transformer outperforms state-of-the-art models significantly, achieving an average of 17% improvement compared to the best SOTA. To the best of our knowledge, this is the first work that explicitly models the layer-wise evolution of attention maps. Our implementation is available at https://github.com/pkuyym/EvolvingAttention.