Yang, Xiaohang
Open-Source Reinforcement Learning Environments Implemented in MuJoCo with Franka Manipulator
Xu, Zichun, Li, Yuntao, Yang, Xiaohang, Zhao, Zhiyuan, Zhuang, Lei, Zhao, Jingdong
This paper presents three open-source reinforcement learning environments developed on the MuJoCo physics engine with the Franka Emika Panda arm in MuJoCo Menagerie. Three representative tasks, push, slide, and pick-and-place, are implemented through the Gymnasium Robotics API, which inherits from the core of Gymnasium. Both the sparse binary and dense rewards are supported, and the observation space contains the keys of desired and achieved goals to follow the Multi-Goal Reinforcement Learning framework. Three different off-policy algorithms are used to validate the simulation attributes to ensure the fidelity of all tasks, and benchmark results are also given. Each environment and task are defined in a clean way, and the main parameters for modifying the environment are preserved to reflect the main difference. The repository, including all environments, is available at https://github.com/zichunxx/panda_mujoco_gym.
A Combined Inverse Kinematics Algorithm Using FABRIK with Optimization
Xu, Zichun, Li, Yuntao, Yang, Xiaohang, Zhao, Zhiyuan, Zhao, Jingdong, Liu, Hong
Forward and backward reaching inverse kinematics (FABRIK) is a heuristic inverse kinematics solver that is gradually applied to manipulators with the advantages of fast convergence and generating more realistic configurations. However, under the high error constraint, FABRIK exhibits unstable convergence behavior, which is unsatisfactory for the real-time motion planning of manipulators. In this paper, a novel inverse kinematics algorithm that combines FABRIK and the sequential quadratic programming (SQP) algorithm is presented, in which the joint angles deduced by FABRIK will be taken as the initial seed of the SQP algorithm to avoid getting stuck in local minima. The combined algorithm is evaluated with experiments, in which our algorithm can achieve higher success rates and faster solution times than FABRIK under the high error constraint. Furthermore, the combined algorithm can generate continuous trajectories for the UR5 and KUKA LBR IIWA 14 R820 manipulators in path tracking with no pose error and permitted position error of the end-effector.