Goto

Collaborating Authors

 Yang, Xiaochen


COMO: Cross-Mamba Interaction and Offset-Guided Fusion for Multimodal Object Detection

arXiv.org Artificial Intelligence

Single-modal object detection tasks often experience performance degradation when encountering diverse scenarios. In contrast, multimodal object detection tasks can offer more comprehensive information about object features by integrating data from various modalities. Current multimodal object detection methods generally use various fusion techniques, including conventional neural networks and transformer-based models, to implement feature fusion strategies and achieve complementary information. However, since multimodal images are captured by different sensors, there are often misalignments between them, making direct matching challenging. This misalignment hinders the ability to establish strong correlations for the same object across different modalities. In this paper, we propose a novel approach called the CrOss-Mamba interaction and Offset-guided fusion (COMO) framework for multimodal object detection tasks. The COMO framework employs the cross-mamba technique to formulate feature interaction equations, enabling multimodal serialized state computation. This results in interactive fusion outputs while reducing computational overhead and improving efficiency. Additionally, COMO leverages high-level features, which are less affected by misalignment, to facilitate interaction and transfer complementary information between modalities, addressing the positional offset challenges caused by variations in camera angles and capture times. Furthermore, COMO incorporates a global and local scanning mechanism in the cross-mamba module to capture features with local correlation, particularly in remote sensing images. To preserve low-level features, the offset-guided fusion mechanism ensures effective multiscale feature utilization, allowing the construction of a multiscale fusion data cube that enhances detection performance.


Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation

arXiv.org Artificial Intelligence

Automatic adversarial prompt generation provides remarkable success in jailbreaking safely-aligned large language models (LLMs). Existing gradient-based attacks, while demonstrating outstanding performance in jailbreaking white-box LLMs, often generate garbled adversarial prompts with chaotic appearance. These adversarial prompts are difficult to transfer to other LLMs, hindering their performance in attacking unknown victim models. In this paper, for the first time, we delve into the semantic meaning embedded in garbled adversarial prompts and propose a novel method that "translates" them into coherent and human-readable natural language adversarial prompts. In this way, we can effectively uncover the semantic information that triggers vulnerabilities of the model and unambiguously transfer it to the victim model, without overlooking the adversarial information hidden in the garbled text, to enhance jailbreak attacks. It also offers a new approach to discovering effective designs for jailbreak prompts, advancing the understanding of jailbreak attacks. Experimental results demonstrate that our method significantly improves the success rate of jailbreak attacks against various safety-aligned LLMs and outperforms state-of-the-arts by large margins. With at most 10 queries, our method achieves an average attack success rate of 81.8% in attacking 7 commercial closed-source LLMs, including GPT and Claude-3 series, on HarmBench. Our method also achieves over 90% attack success rates against Llama-2-Chat models on AdvBench, despite their outstanding resistance to jailbreak attacks. Large language models (LLMs) have shown impressive abilities in understanding and generating human-like text. To mitigate the risk of producing illegal or unethical content, many fine-tuning methods have been proposed to obtain safety-aligned LLMs which encourage the LLMs to refuse response to potentially harmful requests (Ouyang et al., 2022; Bai et al., 2022; Korbak et al., 2023; Glaese et al., 2022). Nevertheless, some work (Shen et al., 2023; Zou et al., 2023; Perez et al., 2022; Chao et al., 2023; Liu et al., 2023; Wei et al., 2024) indicates that these models have not yet achieved perfect safety alignment. Instead, safety-aligned LLMs can be induced to respond to harmful requests through carefully designed prompts, referred to as "jailbreaking" (Wei et al., 2024). Many automatic adversarial prompt generation methods have been proposed to improve the performance of jailbreak attacks. Among them, methods appending adversarial suffix obtained by gradientbased optimization to original harmful requests, e.g., Greedy Coordinate Gradient (GCG) (Zou et al., 2023) and its variants (Sitawarin et al., 2024; Li et al., 2024), have demonstrated remarkable success in jailbreaking white-box LLMs (Mazeika et al., 2024). However, these methods often lead to garbled adversarial prompts with chaotic appearance, that can be composed of incoherent words and symbols.


PUAL: A Classifier on Trifurcate Positive-Unlabeled Data

arXiv.org Machine Learning

Positive-unlabeled (PU) learning aims to train a classifier using the data containing only labeled-positive instances and unlabeled instances. However, existing PU learning methods are generally hard to achieve satisfactory performance on trifurcate data, where the positive instances distribute on both sides of the negative instances. To address this issue, firstly we propose a PU classifier with asymmetric loss (PUAL), by introducing a structure of asymmetric loss on positive instances into the objective function of the global and local learning classifier. Then we develop a kernel-based algorithm to enable PUAL to obtain non-linear decision boundary. We show that, through experiments on both simulated and real-world datasets, PUAL can achieve satisfactory classification on trifurcate data.


Train Faster, Perform Better: Modular Adaptive Training in Over-Parameterized Models

arXiv.org Artificial Intelligence

Despite their prevalence in deep-learning communities, over-parameterized models convey high demands of computational costs for proper training. This work studies the fine-grained, modular-level learning dynamics of over-parameterized models to attain a more efficient and fruitful training strategy. Empirical evidence reveals that when scaling down into network modules, such as heads in self-attention models, we can observe varying learning patterns implicitly associated with each module's trainability. To describe such modular-level learning capabilities, we introduce a novel concept dubbed modular neural tangent kernel (mNTK), and we demonstrate that the quality of a module's learning is tightly associated with its mNTK's principal eigenvalue $\lambda_{\max}$. A large $\lambda_{\max}$ indicates that the module learns features with better convergence, while those miniature ones may impact generalization negatively. Inspired by the discovery, we propose a novel training strategy termed Modular Adaptive Training (MAT) to update those modules with their $\lambda_{\max}$ exceeding a dynamic threshold selectively, concentrating the model on learning common features and ignoring those inconsistent ones. Unlike most existing training schemes with a complete BP cycle across all network modules, MAT can significantly save computations by its partially-updating strategy and can further improve performance. Experiments show that MAT nearly halves the computational cost of model training and outperforms the accuracy of baselines.


Improving Transferability of Adversarial Examples via Bayesian Attacks

arXiv.org Artificial Intelligence

This paper presents a substantial extension of our work published at ICLR. Our ICLR work advocated for enhancing transferability in adversarial examples by incorporating a Bayesian formulation into model parameters, which effectively emulates the ensemble of infinitely many deep neural networks, while, in this paper, we introduce a novel extension by incorporating the Bayesian formulation into the model input as well, enabling the joint diversification of both the model input and model parameters. Our empirical findings demonstrate that: 1) the combination of Bayesian formulations for both the model input and model parameters yields significant improvements in transferability; 2) by introducing advanced approximations of the posterior distribution over the model input, adversarial transferability achieves further enhancement, surpassing all state-of-the-arts when attacking without model fine-tuning. Moreover, we propose a principled approach to fine-tune model parameters in such an extended Bayesian formulation. The derived optimization objective inherently encourages flat minima in the parameter space and input space. Extensive experiments demonstrate that our method achieves a new state-of-the-art on transfer-based attacks, improving the average success rate on ImageNet and CIFAR-10 by 19.14% and 2.08%, respectively, when comparing with our ICLR basic Bayesian method. We will make our code publicly available.


HAGEN: Homophily-Aware Graph Convolutional Recurrent Network for Crime Forecasting

arXiv.org Artificial Intelligence

The crime forecasting is an important problem as it greatly contributes to urban safety. Typically, the goal of the problem is to predict different types of crimes for each geographical region (like a neighborhood or censor tract) in the near future. Since nearby regions usually have similar socioeconomic characteristics which indicate similar crime patterns, recent state-of-the-art solutions constructed a distance-based region graph and utilized Graph Neural Network (GNN) techniques for crime forecasting, because the GNN techniques could effectively exploit the latent relationships between neighboring region nodes in the graph. However, this distance-based pre-defined graph cannot fully capture crime correlation between regions that are far from each other but share similar crime patterns. Hence, to make an accurate crime prediction, the main challenge is to learn a better graph that reveals the dependencies between regions in crime occurrences and meanwhile captures the temporal patterns from historical crime records. To address these challenges, we propose an end-to-end graph convolutional recurrent network called HAGEN with several novel designs for crime prediction. Specifically, our framework could jointly capture the crime correlation between regions and the temporal crime dynamics by combining an adaptive region graph learning module with the Diffusion Convolution Gated Recurrent Unit (DCGRU). Based on the homophily assumption of GNN, we propose a homophily-aware constraint to regularize the optimization of the region graph so that neighboring region nodes on the learned graph share similar crime patterns, thus fitting the mechanism of diffusion convolution. It also incorporates crime embedding to model the interdependencies between regions and crime categories. Empirical experiments and comprehensive analysis on two real-world datasets showcase the effectiveness of HAGEN.


Information Theoretic Lower Bounds for Feed-Forward Fully-Connected Deep Networks

arXiv.org Machine Learning

In this paper, we study the sample complexity lower bounds for the exact recovery of parameters and for a positive excess risk of a feed-forward, fully-connected neural network for binary classification, using information-theoretic tools. We prove these lower bounds by the existence of a generative network characterized by a backwards data generating process, where the input is generated based on the binary output, and the network is parametrized by weight parameters for the hidden layers. The sample complexity lower bound for the exact recovery of parameters is $\Omega(d r \log(r) + p )$ and for a positive excess risk is $\Omega(r \log(r) + p )$, where $p$ is the dimension of the input, $r$ reflects the rank of the weight matrices and $d$ is the number of hidden layers. To the best of our knowledge, our results are the first information theoretic lower bounds.


Towards Certified Robustness of Metric Learning

arXiv.org Machine Learning

Metric learning aims to learn a distance metric such that semantically similar instances are pulled together while dissimilar instances are pushed away. Many existing methods consider maximizing or at least constraining a distance "margin" that separates similar and dissimilar pairs of instances to guarantee their performance on a subsequent k-nearest neighbor classifier. However, such a margin in the feature space does not necessarily lead to robustness certification or even anticipated generalization advantage, since a small perturbation of test instance in the instance space could still potentially alter the model prediction. To address this problem, we advocate penalizing small distance between training instances and their nearest adversarial examples, and we show that the resulting new approach to metric learning enjoys a larger certified neighborhood with theoretical performance guarantee. Moreover, drawing on an intuitive geometric insight, the proposed new loss term permits an analytically elegant closed-form solution and offers great flexibility in leveraging it jointly with existing metric learning methods. Extensive experiments demonstrate the superiority of the proposed method over the state-of-the-arts in terms of both discrimination accuracy and robustness to noise.