Yang, Shuwen
SciAssess: Benchmarking LLM Proficiency in Scientific Literature Analysis
Cai, Hengxing, Cai, Xiaochen, Chang, Junhan, Li, Sihang, Yao, Lin, Wang, Changxin, Gao, Zhifeng, Wang, Hongshuai, Li, Yongge, Lin, Mujie, Yang, Shuwen, Wang, Jiankun, Xu, Mingjun, Huang, Jin, Xi, Fang, Zhuang, Jiaxi, Yin, Yuqi, Li, Yaqi, Chen, Changhong, Cheng, Zheng, Zhao, Zifeng, Zhang, Linfeng, Ke, Guolin
Recent breakthroughs in Large Language Models (LLMs) have revolutionized natural language understanding and generation, sparking significant interest in applying them to scientific literature analysis. However, existing benchmarks fail to adequately evaluate the proficiency of LLMs in this domain, particularly in scenarios requiring higher-level abilities beyond mere memorization and the handling of multimodal data. In response to this gap, we introduce SciAssess, a benchmark specifically designed for the comprehensive evaluation of LLMs in scientific literature analysis. SciAssess aims to thoroughly assess the efficacy of LLMs by focusing on their capabilities in Memorization (L1), Comprehension (L2), and Analysis \& Reasoning (L3). It encompasses a variety of tasks drawn from diverse scientific fields, including fundamental science, alloy materials, biomedicine, drug discovery, and organic materials. To ensure the reliability of SciAssess, rigorous quality control measures have been implemented, ensuring accuracy, anonymization, and compliance with copyright standards. SciAssess evaluates 11 LLMs, including GPT, Claude, and Gemini, highlighting their strengths and areas for improvement. This evaluation supports the ongoing development of LLM applications in the analysis of scientific literature. SciAssess and its resources are available at \url{https://sci-assess.github.io/}.
Uni-SMART: Universal Science Multimodal Analysis and Research Transformer
Cai, Hengxing, Cai, Xiaochen, Yang, Shuwen, Wang, Jiankun, Yao, Lin, Gao, Zhifeng, Chang, Junhan, Li, Sihang, Xu, Mingjun, Wang, Changxin, Wang, Hongshuai, Li, Yongge, Lin, Mujie, Li, Yaqi, Yin, Yuqi, Zhang, Linfeng, Ke, Guolin
In scientific research and its application, scientific literature analysis is crucial as it allows researchers to build on the work of others. However, the fast growth of scientific knowledge has led to a massive increase in scholarly articles, making in-depth literature analysis increasingly challenging and time-consuming. The emergence of Large Language Models (LLMs) has offered a new way to address this challenge. Known for their strong abilities in summarizing texts, LLMs are seen as a potential tool to improve the analysis of scientific literature. However, existing LLMs have their own limits. Scientific literature often includes a wide range of multimodal elements, such as tables, charts, and molecule, which are hard for text-focused LLMs to understand and analyze. This issue points to the urgent need for new solutions that can fully understand and analyze multimodal content in scientific literature. To answer this demand, we present \textbf{Uni-SMART} (Universal Science Multimodal Analysis and Research Transformer), an innovative model designed for in-depth understanding of multimodal scientific literature. Through rigorous quantitative evaluation across several domains, Uni-SMART demonstrates superior performance over other text-focused LLMs. Furthermore, our exploration extends to practical applications, including patent infringement detection and nuanced analysis of charts. These applications not only highlight Uni-SMART's adaptability but also its potential to revolutionize how we interact with scientific literature.
DCQA: Document-Level Chart Question Answering towards Complex Reasoning and Common-Sense Understanding
Wu, Anran, Xiao, Luwei, Wu, Xingjiao, Yang, Shuwen, Xu, Junjie, Zhuang, Zisong, Xie, Nian, Jin, Cheng, He, Liang
Visually-situated languages such as charts and plots are omnipresent in real-world documents. These graphical depictions are human-readable and are often analyzed in visually-rich documents to address a variety of questions that necessitate complex reasoning and common-sense responses. Despite the growing number of datasets that aim to answer questions over charts, most only address this task in isolation, without considering the broader context of document-level question answering. Moreover, such datasets lack adequate common-sense reasoning information in their questions. In this work, we introduce a novel task named document-level chart question answering (DCQA). The goal of this task is to conduct document-level question answering, extracting charts or plots in the document via document layout analysis (DLA) first and subsequently performing chart question answering (CQA). The newly developed benchmark dataset comprises 50,010 synthetic documents integrating charts in a wide range of styles (6 styles in contrast to 3 for PlotQA and ChartQA) and includes 699,051 questions that demand a high degree of reasoning ability and common-sense understanding. Besides, we present the development of a potent question-answer generation engine that employs table data, a rich color set, and basic question templates to produce a vast array of reasoning question-answer pairs automatically. Based on DCQA, we devise an OCR-free transformer for document-level chart-oriented understanding, capable of DLA and answering complex reasoning and common-sense questions over charts in an OCR-free manner. Our DCQA dataset is expected to foster research on understanding visualizations in documents, especially for scenarios that require complex reasoning for charts in the visually-rich document. We implement and evaluate a set of baselines, and our proposed method achieves comparable results.
Progressive Evidence Refinement for Open-domain Multimodal Retrieval Question Answering
Yang, Shuwen, Wu, Anran, Wu, Xingjiao, Xiao, Luwei, Ma, Tianlong, Jin, Cheng, He, Liang
Pre-trained multimodal models have achieved significant success in retrieval-based question answering. However, current multimodal retrieval question-answering models face two main challenges. Firstly, utilizing compressed evidence features as input to the model results in the loss of fine-grained information within the evidence. Secondly, a gap exists between the feature extraction of evidence and the question, which hinders the model from effectively extracting critical features from the evidence based on the given question. We propose a two-stage framework for evidence retrieval and question-answering to alleviate these issues. First and foremost, we propose a progressive evidence refinement strategy for selecting crucial evidence. This strategy employs an iterative evidence retrieval approach to uncover the logical sequence among the evidence pieces. It incorporates two rounds of filtering to optimize the solution space, thus further ensuring temporal efficiency. Subsequently, we introduce a semi-supervised contrastive learning training strategy based on negative samples to expand the scope of the question domain, allowing for a more thorough exploration of latent knowledge within known samples. Finally, in order to mitigate the loss of fine-grained information, we devise a multi-turn retrieval and question-answering strategy to handle multimodal inputs. This strategy involves incorporating multimodal evidence directly into the model as part of the historical dialogue and question. Meanwhile, we leverage a cross-modal attention mechanism to capture the underlying connections between the evidence and the question, and the answer is generated through a decoding generation approach. We validate the model's effectiveness through extensive experiments, achieving outstanding performance on WebQA and MultimodelQA benchmark tests.
DANE: Domain Adaptive Network Embedding
Zhang, Yizhou, Song, Guojie, Du, Lun, Yang, Shuwen, Jin, Yilun
Recent works reveal that network embedding techniques enable many machine learning models to handle diverse downstream tasks on graph structured data. However, as previous methods usually focus on learning embeddings for a single network, they can not learn representations transferable on multiple networks. Hence, it is important to design a network embedding algorithm that supports downstream model transferring on different networks, known as domain adaptation. In this paper, we propose a novel Domain Adaptive Network Embedding framework, which applies graph convolutional network to learn transferable embeddings. In DANE, nodes from multiple networks are encoded to vectors via a shared set of learnable parameters so that the vectors share an aligned embedding space. The distribution of embeddings on different networks are further aligned by adversarial learning regularization. In addition, DANE's advantage in learning transferable network embedding can be guaranteed theoretically. Extensive experiments reflect that the proposed framework outperforms other state-of-the-art network embedding baselines in cross-network domain adaptation tasks.