Goto

Collaborating Authors

 Yang, Shusheng


Towards Ambiguity-Free Spatial Foundation Model: Rethinking and Decoupling Depth Ambiguity

arXiv.org Artificial Intelligence

Depth ambiguity is a fundamental challenge in spatial scene understanding, especially in transparent scenes where single-depth estimates fail to capture full 3D structure. Existing models, limited to deterministic predictions, overlook real-world multi-layer depth. To address this, we introduce a paradigm shift from single-prediction to multi-hypothesis spatial foundation models. We first present \texttt{MD-3k}, a benchmark exposing depth biases in expert and foundational models through multi-layer spatial relationship labels and new metrics. To resolve depth ambiguity, we propose Laplacian Visual Prompting (LVP), a training-free spectral prompting technique that extracts hidden depth from pre-trained models via Laplacian-transformed RGB inputs. By integrating LVP-inferred depth with standard RGB-based estimates, our approach elicits multi-layer depth without model retraining. Extensive experiments validate the effectiveness of LVP in zero-shot multi-layer depth estimation, unlocking more robust and comprehensive geometry-conditioned visual generation, 3D-grounded spatial reasoning, and temporally consistent video-level depth inference. Our benchmark and code will be available at https://github.com/Xiaohao-Xu/Ambiguity-in-Space.


Qwen-VL: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond

arXiv.org Artificial Intelligence

In this work, we introduce the Qwen-VL series, a set of large-scale vision-language models (LVLMs) designed to perceive and understand both texts and images. Starting from the Qwen-LM as a foundation, we endow it with visual capacity by the meticulously designed (i) visual receptor, (ii) input-output interface, (iii) 3-stage training pipeline, and (iv) multilingual multimodal cleaned corpus. Beyond the conventional image description and question-answering, we implement the grounding and text-reading ability of Qwen-VLs by aligning image-caption-box tuples. The resulting models, including Qwen-VL and Qwen-VL-Chat, set new records for generalist models under similar model scales on a broad range of visual-centric benchmarks (e.g., image captioning, question answering, visual grounding) and different settings (e.g., zero-shot, few-shot). Moreover, on real-world dialog benchmarks, our instruction-tuned Qwen-VL-Chat also demonstrates superiority compared to existing vision-language chatbots. Code, demo and models are available at https://github.com/QwenLM/Qwen-VL.


Qwen Technical Report

arXiv.org Artificial Intelligence

Large language models (LLMs) have revolutionized the field of artificial intelligence, enabling natural language processing tasks that were previously thought to be exclusive to humans. In this work, we introduce Qwen, the first installment of our large language model series. Qwen is a comprehensive language model series that encompasses distinct models with varying parameter counts. It includes Qwen, the base pretrained language models, and Qwen-Chat, the chat models finetuned with human alignment techniques. The base language models consistently demonstrate superior performance across a multitude of downstream tasks, and the chat models, particularly those trained using Reinforcement Learning from Human Feedback (RLHF), are highly competitive. The chat models possess advanced tool-use and planning capabilities for creating agent applications, showcasing impressive performance even when compared to bigger models on complex tasks like utilizing a code interpreter. Furthermore, we have developed coding-specialized models, Code-Qwen and Code-Qwen-Chat, as well as mathematics-focused models, Math-Qwen-Chat, which are built upon base language models. These models demonstrate significantly improved performance in comparison with open-source models, and slightly fall behind the proprietary models.


TouchStone: Evaluating Vision-Language Models by Language Models

arXiv.org Artificial Intelligence

Large vision-language models (LVLMs) have recently witnessed rapid advancements, exhibiting a remarkable capacity for perceiving, understanding, and processing visual information by connecting visual receptor with large language models (LLMs). However, current assessments mainly focus on recognizing and reasoning abilities, lacking direct evaluation of conversational skills and neglecting visual storytelling abilities. In this paper, we propose an evaluation method that uses strong LLMs as judges to comprehensively evaluate the various abilities of LVLMs. Firstly, we construct a comprehensive visual dialogue dataset TouchStone, consisting of open-world images and questions, covering five major categories of abilities and 27 subtasks. This dataset not only covers fundamental recognition and comprehension but also extends to literary creation. Secondly, by integrating detailed image annotations we effectively transform the multimodal input content into a form understandable by LLMs. This enables us to employ advanced LLMs for directly evaluating the quality of the multimodal dialogue without requiring human intervention. Through validation, we demonstrate that powerful LVLMs, such as GPT-4, can effectively score dialogue quality by leveraging their textual capabilities alone, aligning with human preferences. We hope our work can serve as a touchstone for LVLMs' evaluation and pave the way for building stronger LVLMs. The evaluation code is available at https://github.com/OFA-Sys/TouchStone.