Goto

Collaborating Authors

 Yang, Shuang


AutoRedTeamer: Autonomous Red Teaming with Lifelong Attack Integration

arXiv.org Artificial Intelligence

As large language models (LLMs) become increasingly capable, security and safety evaluation are crucial. While current red teaming approaches have made strides in assessing LLM vulnerabilities, they often rely heavily on human input and lack comprehensive coverage of emerging attack vectors. This paper introduces AutoRedTeamer, a novel framework for fully automated, end-to-end red teaming against LLMs. AutoRedTeamer combines a multi-agent architecture with a memory-guided attack selection mechanism to enable continuous discovery and integration of new attack vectors. The dual-agent framework consists of a red teaming agent that can operate from high-level risk categories alone to generate and execute test cases and a strategy proposer agent that autonomously discovers and implements new attacks by analyzing recent research. This modular design allows AutoRedTeamer to adapt to emerging threats while maintaining strong performance on existing attack vectors. We demonstrate AutoRedTeamer's effectiveness across diverse evaluation settings, achieving 20% higher attack success rates on HarmBench against Llama-3.1-70B while reducing computational costs by 46% compared to existing approaches. AutoRedTeamer also matches the diversity of human-curated benchmarks in generating test cases, providing a comprehensive, scalable, and continuously evolving framework for evaluating the security of AI systems.


UDora: A Unified Red Teaming Framework against LLM Agents by Dynamically Hijacking Their Own Reasoning

arXiv.org Artificial Intelligence

Large Language Model (LLM) agents equipped with external tools have become increasingly powerful for handling complex tasks such as web shopping, automated email replies, and financial trading. However, these advancements also amplify the risks of adversarial attacks, particularly when LLM agents can access sensitive external functionalities. Moreover, because LLM agents engage in extensive reasoning or planning before executing final actions, manipulating them into performing targeted malicious actions or invoking specific tools remains a significant challenge. Consequently, directly embedding adversarial strings in malicious instructions or injecting malicious prompts into tool interactions has become less effective against modern LLM agents. In this work, we present UDora, a unified red teaming framework designed for LLM Agents that dynamically leverages the agent's own reasoning processes to compel it toward malicious behavior. Specifically, UDora first samples the model's reasoning for the given task, then automatically identifies multiple optimal positions within these reasoning traces to insert targeted perturbations. Subsequently, it uses the modified reasoning as the objective to optimize the adversarial strings. By iteratively applying this process, the LLM agent will then be induced to undertake designated malicious actions or to invoke specific malicious tools. Our approach demonstrates superior effectiveness compared to existing methods across three LLM agent datasets.


Session-Level Dynamic Ad Load Optimization using Offline Robust Reinforcement Learning

arXiv.org Artificial Intelligence

Session-level dynamic ad load optimization aims to personalize the density and types of delivered advertisements in real time during a user's online session by dynamically balancing user experience quality and ad monetization. Traditional causal learning-based approaches struggle with key technical challenges, especially in handling confounding bias and distribution shifts. In this paper, we develop an offline deep Q-network (DQN)-based framework that effectively mitigates confounding bias in dynamic systems and demonstrates more than 80% offline gains compared to the best causal learning-based production baseline. Moreover, to improve the framework's robustness against unanticipated distribution shifts, we further enhance our framework with a novel offline robust dueling DQN approach. This approach achieves more stable rewards on multiple OpenAI-Gym datasets as perturbations increase, and provides an additional 5% offline gains on real-world ad delivery data. Deployed across multiple production systems, our approach has achieved outsized topline gains. Post-launch online A/B tests have shown double-digit improvements in the engagement-ad score trade-off efficiency, significantly enhancing our platform's capability to serve both consumers and advertisers.


Ads Supply Personalization via Doubly Robust Learning

arXiv.org Artificial Intelligence

Ads supply personalization aims to balance the revenue and user engagement, two long-term objectives in social media ads, by tailoring the ad quantity and density. In the industry-scale system, the challenge for ads supply lies in modeling the counterfactual effects of a conservative supply treatment (e.g., a small density change) over an extended duration. In this paper, we present a streamlined framework for personalized ad supply. This framework optimally utilizes information from data collection policies through the doubly robust learning. Consequently, it significantly improves the accuracy of long-term treatment effect estimates. Additionally, its low-complexity design not only results in computational cost savings compared to existing methods, but also makes it scalable for billion-scale applications. Through both offline experiments and online production tests, the framework consistently demonstrated significant improvements in top-line business metrics over months. The framework has been fully deployed to live traffic in one of the world's largest social media platforms.


Learning Separable Hidden Unit Contributions for Speaker-Adaptive Lip-Reading

arXiv.org Artificial Intelligence

In this paper, we propose a novel method for speaker adaptation in lip reading, motivated by two observations. Firstly, a speaker's own characteristics can always be portrayed well by his/her few facial images or even a single image with shallow networks, while the fine-grained dynamic features associated with speech content expressed by the talking face always need deep sequential networks to represent accurately. Therefore, we treat the shallow and deep layers differently for speaker adaptive lip reading. Secondly, we observe that a speaker's unique characteristics ( e.g. prominent oral cavity and mandible) have varied effects on lip reading performance for different words and pronunciations, necessitating adaptive enhancement or suppression of the features for robust lip reading. Based on these two observations, we propose to take advantage of the speaker's own characteristics to automatically learn separable hidden unit contributions with different targets for shallow layers and deep layers respectively. For shallow layers where features related to the speaker's characteristics are stronger than the speech content related features, we introduce speaker-adaptive features to learn for enhancing the speech content features. For deep layers where both the speaker's features and the speech content features are all expressed well, we introduce the speaker-adaptive features to learn for suppressing the speech content irrelevant noise for robust lip reading. Our approach consistently outperforms existing methods, as confirmed by comprehensive analysis and comparison across different settings. Besides the evaluation on the popular LRW-ID and GRID datasets, we also release a new dataset for evaluation, CAS-VSR-S68h, to further assess the performance in an extreme setting where just a few speakers are available but the speech content covers a large and diversified range.


Breaking the Curse of Quality Saturation with User-Centric Ranking

arXiv.org Artificial Intelligence

A key puzzle in search, ads, and recommendation is that the ranking model can only utilize a small portion of the vastly available user interaction data. As a result, increasing data volume, model size, or computation FLOPs will quickly suffer from diminishing returns. We examined this problem and found that one of the root causes may lie in the so-called ``item-centric'' formulation, which has an unbounded vocabulary and thus uncontrolled model complexity. To mitigate quality saturation, we introduce an alternative formulation named ``user-centric ranking'', which is based on a transposed view of the dyadic user-item interaction data. We show that this formulation has a promising scaling property, enabling us to train better-converged models on substantially larger data sets.


Model-based Constrained MDP for Budget Allocation in Sequential Incentive Marketing

arXiv.org Artificial Intelligence

Sequential incentive marketing is an important approach for online businesses to acquire customers, increase loyalty and boost sales. How to effectively allocate the incentives so as to maximize the return (e.g., business objectives) under the budget constraint, however, is less studied in the literature. This problem is technically challenging due to the facts that 1) the allocation strategy has to be learned using historically logged data, which is counterfactual in nature, and 2) both the optimality and feasibility (i.e., that cost cannot exceed budget) needs to be assessed before being deployed to online systems. In this paper, we formulate the problem as a constrained Markov decision process (CMDP). To solve the CMDP problem with logged counterfactual data, we propose an efficient learning algorithm which combines bisection search and model-based planning. First, the CMDP is converted into its dual using Lagrangian relaxation, which is proved to be monotonic with respect to the dual variable. Furthermore, we show that the dual problem can be solved by policy learning, with the optimal dual variable being found efficiently via bisection search (i.e., by taking advantage of the monotonicity). Lastly, we show that model-based planing can be used to effectively accelerate the joint optimization process without retraining the policy for every dual variable. Empirical results on synthetic and real marketing datasets confirm the effectiveness of our methods.


Tile Networks: Learning Optimal Geometric Layout for Whole-page Recommendation

arXiv.org Artificial Intelligence

Finding optimal configurations in a geometric space is a key challenge in many technological disciplines. Current approaches either rely heavily on human domain expertise and are difficult to scale. In this paper we show it is possible to solve configuration optimization problems for whole-page recommendation using reinforcement learning. The proposed \textit{Tile Networks} is a neural architecture that optimizes 2D geometric configurations by arranging items on proper positions. Empirical results on real dataset demonstrate its superior performance compared to traditional learning to rank approaches and recent deep models.


Learning to Schedule DAG Tasks

arXiv.org Artificial Intelligence

Scheduling computational tasks represented by directed acyclic graphs (DAGs) is challenging because of its complexity. Conventional scheduling algorithms rely heavily on simple heuristics such as shortest job first (SJF) and critical path (CP), and are often lacking in scheduling quality. In this paper, we present a novel learning-based approach to scheduling DAG tasks. The algorithm employs a reinforcement learning agent to iteratively add directed edges to the DAG, one at a time, to enforce ordering (i.e., priorities of execution and resource allocation) of "tricky" job nodes. By doing so, the original DAG scheduling problem is dramatically reduced to a much simpler proxy problem, on which heuristic scheduling algorithms such as SJF and CP can be efficiently improved. Our approach can be easily applied to any existing heuristic scheduling algorithms. On the benchmark dataset of TPC-H, we show that our learning based approach can significantly improve over popular heuristic algorithms and consistently achieves the best performance among several methods under a variety of settings.


Learning (Re-)Starting Solutions for Vehicle Routing Problems

arXiv.org Artificial Intelligence

A key challenge in solving a combinatorial optimization problem is how to guide the agent (i.e., solver) to efficiently explore the enormous search space. Conventional approaches often rely on enumeration (e.g., exhaustive, random, or tabu search) or have to restrict the exploration to rather limited regions (e.g., a single path as in iterative algorithms). In this paper, we show it is possible to use machine learning to speedup the exploration. In particular, a value network is trained to evaluate solution candidates, which provides a useful structure (i.e., an approximate value surface) over the search space; this value network is then used to screen solutions to help a black-box optimization agent to initialize or restart so as to navigate through the search space towards desirable solutions. Experiments demonstrate that the proposed ``Learn to Restart'' algorithm achieves promising results in solving Capacitated Vehicle Routing Problems (CVRPs).