Goto

Collaborating Authors

 Yang, Shih-Min


KEA: Keeping Exploration Alive by Proactively Coordinating Exploration Strategies

arXiv.org Artificial Intelligence

Soft Actor-Critic (SAC) has achieved notable success in continuous control tasks but struggles in sparse reward settings, where infrequent rewards make efficient exploration challenging. While novelty-based exploration methods address this issue by encouraging the agent to explore novel states, they are not trivial to apply to SAC. In particular, managing the interaction between novelty-based exploration and SAC's stochastic policy can lead to inefficient exploration and redundant sample collection. In this paper, we propose KEA (Keeping Exploration Alive) which tackles the inefficiencies in balancing exploration strategies when combining SAC with novelty-based exploration. KEA introduces an additional co-behavior agent that works alongside SAC and a switching mechanism to facilitate proactive coordination between exploration strategies from novelty-based exploration and stochastic policy. This coordination allows the agent to maintain stochasticity in high-novelty regions, enhancing exploration efficiency and reducing repeated sample collection. We first analyze this potential issue in a 2D navigation task and then evaluate KEA on sparse reward control tasks from the DeepMind Control Suite. Compared to state-of-the-art novelty-based exploration baselines, our experiments show that KEA significantly improves learning efficiency and robustness in sparse reward setups.


Learning Extrinsic Dexterity with Parameterized Manipulation Primitives

arXiv.org Artificial Intelligence

Many practically relevant robot grasping problems feature a target object for which all grasps are occluded, e.g., by the environment. Single-shot grasp planning invariably fails in such scenarios. Instead, it is necessary to first manipulate the object into a configuration that affords a grasp. We solve this problem by learning a sequence of actions that utilize the environment to change the object's pose. Concretely, we employ hierarchical reinforcement learning to combine a sequence of learned parameterized manipulation primitives. By learning the low-level manipulation policies, our approach can control the object's state through exploiting interactions between the object, the gripper, and the environment. Designing such a complex behavior analytically would be infeasible under uncontrolled conditions, as an analytic approach requires accurate physical modeling of the interaction and contact dynamics. In contrast, we learn a hierarchical policy model that operates directly on depth perception data, without the need for object detection, pose estimation, or manual design of controllers. We evaluate our approach on picking box-shaped objects of various weight, shape, and friction properties from a constrained table-top workspace. Our method transfers to a real robot and is able to successfully complete the object picking task in 98\% of experimental trials.