Goto

Collaborating Authors

 Yang, Saelyne


ExpressEdit: Video Editing with Natural Language and Sketching

arXiv.org Artificial Intelligence

Informational videos serve as a crucial source for explaining conceptual and procedural knowledge to novices and experts alike. When producing informational videos, editors edit videos by overlaying text/images or trimming footage to enhance the video quality and make it more engaging. However, video editing can be difficult and time-consuming, especially for novice video editors who often struggle with expressing and implementing their editing ideas. To address this challenge, we first explored how multimodality$-$natural language (NL) and sketching, which are natural modalities humans use for expression$-$can be utilized to support video editors in expressing video editing ideas. We gathered 176 multimodal expressions of editing commands from 10 video editors, which revealed the patterns of use of NL and sketching in describing edit intents. Based on the findings, we present ExpressEdit, a system that enables editing videos via NL text and sketching on the video frame. Powered by LLM and vision models, the system interprets (1) temporal, (2) spatial, and (3) operational references in an NL command and spatial references from sketching. The system implements the interpreted edits, which then the user can iterate on. An observational study (N=10) showed that ExpressEdit enhanced the ability of novice video editors to express and implement their edit ideas. The system allowed participants to perform edits more efficiently and generate more ideas by generating edits based on user's multimodal edit commands and supporting iterations on the editing commands. This work offers insights into the design of future multimodal interfaces and AI-based pipelines for video editing.


YTCommentQA: Video Question Answerability in Instructional Videos

arXiv.org Artificial Intelligence

Instructional videos provide detailed how-to guides for various tasks, with viewers often posing questions regarding the content. Addressing these questions is vital for comprehending the content, yet receiving immediate answers is difficult. While numerous computational models have been developed for Video Question Answering (Video QA) tasks, they are primarily trained on questions generated based on video content, aiming to produce answers from within the content. However, in real-world situations, users may pose questions that go beyond the video's informational boundaries, highlighting the necessity to determine if a video can provide the answer. Discerning whether a question can be answered by video content is challenging due to the multi-modal nature of videos, where visual and verbal information are intertwined. To bridge this gap, we present the YTCommentQA dataset, which contains naturally-generated questions from YouTube, categorized by their answerability and required modality to answer -- visual, script, or both. Experiments with answerability classification tasks demonstrate the complexity of YTCommentQA and emphasize the need to comprehend the combined role of visual and script information in video reasoning. The dataset is available at https://github.com/lgresearch/YTCommentQA.