Yang, Minghui
Versatile Multimodal Controls for Whole-Body Talking Human Animation
Qin, Zheng, Zheng, Ruobing, Wang, Yabing, Li, Tianqi, Zhu, Zixin, Yang, Minghui, Yang, Ming, Wang, Le
Human animation from a single reference image shall be flexible to synthesize whole-body motion for either a headshot or whole-body portrait, where the motions are readily controlled by audio signal and text prompts. This is hard for most existing methods as they only support producing pre-specified head or half-body motion aligned with audio inputs. In this paper, we propose a versatile human animation method, i.e., VersaAnimator, which generates whole-body talking human from arbitrary portrait images, not only driven by audio signal but also flexibly controlled by text prompts. Specifically, we design a text-controlled, audio-driven motion generator that produces whole-body motion representations in 3D synchronized with audio inputs while following textual motion descriptions. To promote natural smooth motion, we propose a code-pose translation module to link VAE codebooks with 2D DWposes extracted from template videos. Moreover, we introduce a multi-modal video diffusion that generates photorealistic human animation from a reference image according to both audio inputs and whole-body motion representations. Extensive experiments show that VersaAnimator outperforms existing methods in visual quality, identity preservation, and audio-lip synchronization.
Ditto: Motion-Space Diffusion for Controllable Realtime Talking Head Synthesis
Li, Tianqi, Zheng, Ruobing, Yang, Minghui, Chen, Jingdong, Yang, Ming
Recent advances in diffusion models have revolutionized audio-driven talking head synthesis. Beyond precise lip synchronization, diffusion-based methods excel in generating subtle expressions and natural head movements that are well-aligned with the audio signal. However, these methods are confronted by slow inference speed, insufficient fine-grained control over facial motions, and occasional visual artifacts largely due to an implicit latent space derived from Variational Auto-Encoders (VAE), which prevent their adoption in realtime interaction applications. To address these issues, we introduce Ditto, a diffusion-based framework that enables controllable realtime talking head synthesis. Our key innovation lies in bridging motion generation and photorealistic neural rendering through an explicit identity-agnostic motion space, replacing conventional VAE representations. This design substantially reduces the complexity of diffusion learning while enabling precise control over the synthesized talking heads. We further propose an inference strategy that jointly optimizes three key components: audio feature extraction, motion generation, and video synthesis. This optimization enables streaming processing, realtime inference, and low first-frame delay, which are the functionalities crucial for interactive applications such as AI assistants. Extensive experimental results demonstrate that Ditto generates compelling talking head videos and substantially outperforms existing methods in both motion control and realtime performance.
GraphicsDreamer: Image to 3D Generation with Physical Consistency
Chen, Pei, Wang, Fudong, Tong, Yixuan, Chen, Jingdong, Yang, Ming, Yang, Minghui
Recently, the surge of efficient and automated 3D AI-generated content (AIGC) methods has increasingly illuminated the path of transforming human imagination into complex 3D structures. However, the automated generation of 3D content is still significantly lags in industrial application. This gap exists because 3D modeling demands high-quality assets with sharp geometry, exquisite topology, and physically based rendering (PBR), among other criteria. To narrow the disparity between generated results and artists' expectations, we introduce GraphicsDreamer, a method for creating highly usable 3D meshes from single images. To better capture the geometry and material details, we integrate the PBR lighting equation into our cross-domain diffusion model, concurrently predicting multi-view color, normal, depth images, and PBR materials. In the geometry fusion stage, we continue to enforce the PBR constraints, ensuring that the generated 3D objects possess reliable texture details, supporting realistic relighting. Furthermore, our method incorporates topology optimization and fast UV unwrapping capabilities, allowing the 3D products to be seamlessly imported into graphics engines. Extensive experiments demonstrate that our model can produce high quality 3D assets in a reasonable time cost compared to previous methods.