Yang, Ming-Hsuan
VideoPrism: A Foundational Visual Encoder for Video Understanding
Zhao, Long, Gundavarapu, Nitesh B., Yuan, Liangzhe, Zhou, Hao, Yan, Shen, Sun, Jennifer J., Friedman, Luke, Qian, Rui, Weyand, Tobias, Zhao, Yue, Hornung, Rachel, Schroff, Florian, Yang, Ming-Hsuan, Ross, David A., Wang, Huisheng, Adam, Hartwig, Sirotenko, Mikhail, Liu, Ting, Gong, Boqing
We introduce VideoPrism, a general-purpose video encoder that tackles diverse video understanding tasks with a single frozen model. We pretrain VideoPrism on a heterogeneous corpus containing 36M high-quality video-caption pairs and 582M video clips with noisy parallel text (e.g., ASR transcripts). The pretraining approach improves upon masked autoencoding by global-local distillation of semantic video embeddings and a token shuffling scheme, enabling VideoPrism to focus primarily on the video modality while leveraging the invaluable text associated with videos. We extensively test VideoPrism on four broad groups of video understanding tasks, from web video question answering to CV for science, achieving state-of-the-art performance on 31 out of 33 video understanding benchmarks.
Improving Point-based Crowd Counting and Localization Based on Auxiliary Point Guidance
Chen, I-Hsiang, Chen, Wei-Ting, Liu, Yu-Wei, Yang, Ming-Hsuan, Kuo, Sy-Yen
Crowd counting and localization have become increasingly important in computer vision due to their wide-ranging applications. While point-based strategies have been widely used in crowd counting methods, they face a significant challenge, i.e., the lack of an effective learning strategy to guide the matching process. This deficiency leads to instability in matching point proposals to target points, adversely affecting overall performance. To address this issue, we introduce an effective approach to stabilize the proposal-target matching in point-based methods. We propose Auxiliary Point Guidance (APG) to provide clear and effective guidance for proposal selection and optimization, addressing the core issue of matching uncertainty. Additionally, we develop Implicit Feature Interpolation (IFI) to enable adaptive feature extraction in diverse crowd scenarios, further enhancing the model's robustness and accuracy. Extensive experiments demonstrate the effectiveness of our approach, showing significant improvements in crowd counting and localization performance, particularly under challenging conditions. The source codes and trained models will be made publicly available.
AdaIR: Exploiting Underlying Similarities of Image Restoration Tasks with Adapters
Chen, Hao-Wei, Xu, Yu-Syuan, Chan, Kelvin C. K., Kuo, Hsien-Kai, Lee, Chun-Yi, Yang, Ming-Hsuan
Existing image restoration approaches typically employ extensive networks specifically trained for designated degradations. Despite being effective, such methods inevitably entail considerable storage costs and computational overheads due to the reliance on task-specific networks. In this work, we go beyond this well-established framework and exploit the inherent commonalities among image restoration tasks. The primary objective is to identify components that are shareable across restoration tasks and augment the shared components with modules specifically trained for individual tasks. Towards this goal, we propose AdaIR, a novel framework that enables low storage cost and efficient training without sacrificing performance. Specifically, a generic restoration network is first constructed through self-supervised pre-training using synthetic degradations. Subsequent to the pre-training phase, adapters are trained to adapt the pre-trained network to specific degradations. AdaIR requires solely the training of lightweight, task-specific modules, ensuring a more efficient storage and training regimen. We have conducted extensive experiments to validate the effectiveness of AdaIR and analyze the influence of the pre-training strategy on discovering shareable components. Extensive experimental results show that AdaIR achieves outstanding results on multi-task restoration while utilizing significantly fewer parameters (1.9 MB) and less training time (7 hours) for each restoration task. The source codes and trained models will be released.
Taming Latent Diffusion Model for Neural Radiance Field Inpainting
Lin, Chieh Hubert, Kim, Changil, Huang, Jia-Bin, Li, Qinbo, Ma, Chih-Yao, Kopf, Johannes, Yang, Ming-Hsuan, Tseng, Hung-Yu
Neural Radiance Field (NeRF) is a representation for 3D reconstruction from multi-view images. Despite some recent work showing preliminary success in editing a reconstructed NeRF with diffusion prior, they remain struggling to synthesize reasonable geometry in completely uncovered regions. One major reason is the high diversity of synthetic contents from the diffusion model, which hinders the radiance field from converging to a crisp and deterministic geometry. Moreover, applying latent diffusion models on real data often yields a textural shift incoherent to the image condition due to auto-encoding errors. These two problems are further reinforced with the use of pixel-distance losses. To address these issues, we propose tempering the diffusion model's stochasticity with per-scene customization and mitigating the textural shift with masked adversarial training. During the analyses, we also found the commonly used pixel and perceptual losses are harmful in the NeRF inpainting task.
Diffusion Models: A Comprehensive Survey of Methods and Applications
Yang, Ling, Zhang, Zhilong, Song, Yang, Hong, Shenda, Xu, Runsheng, Zhao, Yue, Zhang, Wentao, Cui, Bin, Yang, Ming-Hsuan
Diffusion models have emerged as a powerful new family of deep generative models with record-breaking performance in many applications, including image synthesis, video generation, and molecule design. In this survey, we provide an overview of the rapidly expanding body of work on diffusion models, categorizing the research into three key areas: efficient sampling, improved likelihood estimation, and handling data with special structures. We also discuss the potential for combining diffusion models with other generative models for enhanced results. We further review the wide-ranging applications of diffusion models in fields spanning from computer vision, natural language generation, temporal data modeling, to interdisciplinary applications in other scientific disciplines. This survey aims to provide a contextualized, in-depth look at the state of diffusion models, identifying the key areas of focus and pointing to potential areas for further exploration. Github: https://github.com/YangLing0818/Diffusion-Models-Papers-Survey-Taxonomy.
Generalizable Entity Grounding via Assistance of Large Language Model
Qi, Lu, Chen, Yi-Wen, Yang, Lehan, Shen, Tiancheng, Li, Xiangtai, Guo, Weidong, Xu, Yu, Yang, Ming-Hsuan
In this work, we propose a novel approach to densely ground visual entities from a long caption. We leverage a large multimodal model (LMM) to extract semantic nouns, a class-agnostic segmentation model to generate entity-level segmentation, and the proposed multi-modal feature fusion module to associate each semantic noun with its corresponding segmentation mask. Additionally, we introduce a strategy of encoding entity segmentation masks into a colormap, enabling the preservation of fine-grained predictions from features of high-resolution masks. This approach allows us to extract visual features from low-resolution images using the CLIP vision encoder in the LMM, which is more computationally efficient than existing approaches that use an additional encoder for high-resolution images. Our comprehensive experiments demonstrate the superiority of our method, outperforming state-of-the-art techniques on three tasks, including panoptic narrative grounding, referring expression segmentation, and panoptic segmentation.
GLaMM: Pixel Grounding Large Multimodal Model
Rasheed, Hanoona, Maaz, Muhammad, Mullappilly, Sahal Shaji, Shaker, Abdelrahman, Khan, Salman, Cholakkal, Hisham, Anwer, Rao M., Xing, Erix, Yang, Ming-Hsuan, Khan, Fahad S.
Large Multimodal Models (LMMs) extend Large Language Models to the vision domain. Initial LMMs used holistic images and text prompts to generate ungrounded textual responses. Recently, region-level LMMs have been used to generate visually grounded responses. However, they are limited to only referring to a single object category at a time, require users to specify the regions, or cannot offer dense pixel-wise object grounding. In this work, we present Grounding LMM (GLaMM), the first model that can generate natural language responses seamlessly intertwined with corresponding object segmentation masks. GLaMM not only grounds objects appearing in the conversations but is flexible enough to accept both textual and optional visual prompts (region of interest) as input. This empowers users to interact with the model at various levels of granularity, both in textual and visual domains. Due to the lack of standard benchmarks for the novel setting of visually Grounded Conversation Generation (GCG), we introduce a comprehensive evaluation protocol with our curated grounded conversations. Our proposed GCG task requires densely grounded concepts in natural scenes at a large-scale. To this end, we propose a densely annotated Grounding-anything Dataset (GranD) using our proposed automated annotation pipeline that encompasses 7.5M unique concepts grounded in a total of 810M regions available with segmentation masks. Besides GCG, GLaMM also performs effectively on several downstream tasks, e.g., referring expression segmentation, image and region-level captioning and vision-language conversations.
VideoPoet: A Large Language Model for Zero-Shot Video Generation
Kondratyuk, Dan, Yu, Lijun, Gu, Xiuye, Lezama, José, Huang, Jonathan, Hornung, Rachel, Adam, Hartwig, Akbari, Hassan, Alon, Yair, Birodkar, Vighnesh, Cheng, Yong, Chiu, Ming-Chang, Dillon, Josh, Essa, Irfan, Gupta, Agrim, Hahn, Meera, Hauth, Anja, Hendon, David, Martinez, Alonso, Minnen, David, Ross, David, Schindler, Grant, Sirotenko, Mikhail, Sohn, Kihyuk, Somandepalli, Krishna, Wang, Huisheng, Yan, Jimmy, Yang, Ming-Hsuan, Yang, Xuan, Seybold, Bryan, Jiang, Lu
We present VideoPoet, a language model capable of synthesizing high-quality video, with matching audio, from a large variety of conditioning signals. VideoPoet employs a decoder-only transformer architecture that processes multimodal inputs -- including images, videos, text, and audio. The training protocol follows that of Large Language Models (LLMs), consisting of two stages: pretraining and task-specific adaptation. During pretraining, VideoPoet incorporates a mixture of multimodal generative objectives within an autoregressive Transformer framework. The pretrained LLM serves as a foundation that can be adapted for a range of video generation tasks. We present empirical results demonstrating the model's state-of-the-art capabilities in zero-shot video generation, specifically highlighting VideoPoet's ability to generate high-fidelity motions. Project page: http://sites.research.google/videopoet/
Text-Driven Image Editing via Learnable Regions
Lin, Yuanze, Chen, Yi-Wen, Tsai, Yi-Hsuan, Jiang, Lu, Yang, Ming-Hsuan
Language has emerged as a natural interface for image editing. In this paper, we introduce a method for region-based image editing driven by textual prompts, without the need for user-provided masks or sketches. Specifically, our approach leverages an existing pretrained text-to-image model and introduces a bounding box generator to find the edit regions that are aligned with the textual prompts. We show that this simple approach enables flexible editing that is compatible with current image generation models, and is able to handle complex prompts featuring multiple objects, complex sentences or long paragraphs. We conduct an extensive user study to compare our method against state-of-the-art methods. Experiments demonstrate the competitive performance of our method in manipulating images with high fidelity and realism that align with the language descriptions provided. Our project webpage: https://yuanze-lin.me/LearnableRegions_page.
SPAE: Semantic Pyramid AutoEncoder for Multimodal Generation with Frozen LLMs
Yu, Lijun, Cheng, Yong, Wang, Zhiruo, Kumar, Vivek, Macherey, Wolfgang, Huang, Yanping, Ross, David A., Essa, Irfan, Bisk, Yonatan, Yang, Ming-Hsuan, Murphy, Kevin, Hauptmann, Alexander G., Jiang, Lu
In this work, we introduce Semantic Pyramid AutoEncoder (SPAE) for enabling frozen LLMs to perform both understanding and generation tasks involving non-linguistic modalities such as images or videos. SPAE converts between raw pixels and interpretable lexical tokens (or words) extracted from the LLM's vocabulary. The resulting tokens capture both the semantic meaning and the fine-grained details needed for visual reconstruction, effectively translating the visual content into a language comprehensible to the LLM, and empowering it to perform a wide array of multimodal tasks. Our approach is validated through in-context learning experiments with frozen PaLM 2 and GPT 3.5 on a diverse set of image understanding and generation tasks. Our method marks the first successful attempt to enable a frozen LLM to generate image content while surpassing state-of-the-art performance in image understanding tasks, under the same setting, by over 25%.