Goto

Collaborating Authors

 Yang, Lizhi


Generating a Terrain-Robustness Benchmark for Legged Locomotion: A Prototype via Terrain Authoring and Active Learning

arXiv.org Artificial Intelligence

Terrain-aware locomotion has become an emerging topic in legged robotics. However, it is hard to generate diverse, challenging, and realistic unstructured terrains in simulation, which limits the way researchers evaluate their locomotion policies. In this paper, we prototype the generation of a terrain dataset via terrain authoring and active learning, and the learned samplers can stably generate diverse high-quality terrains. We expect the generated dataset to make a terrain-robustness benchmark for legged locomotion. The dataset, the code implementation, and some policy evaluations are released at https://bit.ly/3bn4j7f.


Autonomous Navigation for Quadrupedal Robots with Optimized Jumping through Constrained Obstacles

arXiv.org Artificial Intelligence

Quadrupeds are strong candidates for navigating challenging environments because of their agile and dynamic designs. This paper presents a methodology that extends the range of exploration for quadrupedal robots by creating an end-to-end navigation framework that exploits walking and jumping modes. To obtain a dynamic jumping maneuver while avoiding obstacles, dynamically-feasible trajectories are optimized offline through collocation-based optimization where safety constraints are imposed. Such optimization schematic allows the robot to jump through window-shaped obstacles by considering both obstacles in the air and on the ground. The resulted jumping mode is utilized in an autonomous navigation pipeline that leverages a search-based global planner and a local planner to enable the robot to reach the goal location by walking. A state machine together with a decision making strategy allows the system to switch behaviors between walking around obstacles or jumping through them. The proposed framework is experimentally deployed and validated on a quadrupedal robot, a Mini Cheetah, to enable the robot to autonomously navigate through an environment while avoiding obstacles and jumping over a maximum height of 13 cm to pass through a window-shaped opening in order to reach its goal.