Yang, Linxiao
Task-oriented Time Series Imputation Evaluation via Generalized Representers
Wang, Zhixian, Yang, Linxiao, Sun, Liang, Wen, Qingsong, Wang, Yi
Time series analysis is widely used in many fields such as power energy, economics, and transportation, including different tasks such as forecasting, anomaly detection, classification, etc. Missing values are widely observed in these tasks, and often leading to unpredictable negative effects on existing methods, hindering their further application. In response to this situation, existing time series imputation methods mainly focus on restoring sequences based on their data characteristics, while ignoring the performance of the restored sequences in downstream tasks. Considering different requirements of downstream tasks (e.g., forecasting), this paper proposes an efficient downstream task-oriented time series imputation evaluation approach. By combining time series imputation with neural network models used for downstream tasks, the gain of different imputation strategies on downstream tasks is estimated without retraining, and the most favorable imputation value for downstream tasks is given by combining different imputation strategies according to the estimated gain. The corresponding code can be found in the repository https://github.com/hkuedl/Task-Oriented-Imputation.
CURLS: Causal Rule Learning for Subgroups with Significant Treatment Effect
Zhou, Jiehui, Yang, Linxiao, Liu, Xingyu, Gu, Xinyue, Sun, Liang, Chen, Wei
In causal inference, estimating heterogeneous treatment effects (HTE) is critical for identifying how different subgroups respond to interventions, with broad applications in fields such as precision medicine and personalized advertising. Although HTE estimation methods aim to improve accuracy, how to provide explicit subgroup descriptions remains unclear, hindering data interpretation and strategic intervention management. In this paper, we propose CURLS, a novel rule learning method leveraging HTE, which can effectively describe subgroups with significant treatment effects. Specifically, we frame causal rule learning as a discrete optimization problem, finely balancing treatment effect with variance and considering the rule interpretability. We design an iterative procedure based on the minorize-maximization algorithm and solve a submodular lower bound as an approximation for the original. Quantitative experiments and qualitative case studies verify that compared with state-of-the-art methods, CURLS can find subgroups where the estimated and true effects are 16.1% and 13.8% higher and the variance is 12.0% smaller, while maintaining similar or better estimation accuracy and rule interpretability. Code is available at https://osf.io/zwp2k/.
SLIM: a Scalable Light-weight Root Cause Analysis for Imbalanced Data in Microservice
Ren, Rui, Yang, Jingbang, Yang, Linxiao, Gu, Xinyue, Sun, Liang
The newly deployed service -- one kind of change service, could lead to a new type of minority fault. Existing state-of-the-art methods for fault localization rarely consider the imbalanced fault classification in change service. This paper proposes a novel method that utilizes decision rule sets to deal with highly imbalanced data by optimizing the F1 score subject to cardinality constraints. The proposed method greedily generates the rule with maximal marginal gain and uses an efficient minorize-maximization (MM) approach to select rules iteratively, maximizing a non-monotone submodular lower bound. Compared with existing fault localization algorithms, our algorithm can adapt to the imbalanced fault scenario of change service, and provide interpretable fault causes which are easy to understand and verify. Our method can also be deployed in the online training setting, with only about 15% training overhead compared to the current SOTA methods. Empirical studies showcase that our algorithm outperforms existing fault localization algorithms in both accuracy and model interpretability.
Interactive Generalized Additive Model and Its Applications in Electric Load Forecasting
Yang, Linxiao, Ren, Rui, Gu, Xinyue, Sun, Liang
Electric load forecasting is an indispensable component of electric power system planning and management. Inaccurate load forecasting may lead to the threat of outages or a waste of energy. Accurate electric load forecasting is challenging when there is limited data or even no data, such as load forecasting in holiday, or under extreme weather conditions. As high-stakes decision-making usually follows after load forecasting, model interpretability is crucial for the adoption of forecasting models. In this paper, we propose an interactive GAM which is not only interpretable but also can incorporate specific domain knowledge in electric power industry for improved performance. This boosting-based GAM leverages piecewise linear functions and can be learned through our efficient algorithm. In both public benchmark and electricity datasets, our interactive GAM outperforms current state-of-the-art methods and demonstrates good generalization ability in the cases of extreme weather events. We launched a user-friendly web-based tool based on interactive GAM and already incorporated it into our eForecaster product, a unified AI platform for electricity forecasting.
SaDI: A Self-adaptive Decomposed Interpretable Framework for Electric Load Forecasting under Extreme Events
Liu, Hengbo, Ma, Ziqing, Yang, Linxiao, Zhou, Tian, Xia, Rui, Wang, Yi, Wen, Qingsong, Sun, Liang
Accurate prediction of electric load is crucial in power grid planning and management. In this paper, we solve the electric load forecasting problem under extreme events such as scorching heats. One challenge for accurate forecasting is the lack of training samples under extreme conditions. Also load usually changes dramatically in these extreme conditions, which calls for interpretable model to make better decisions. In this paper, we propose a novel forecasting framework, named Self-adaptive Decomposed Interpretable framework~(SaDI), which ensembles long-term trend, short-term trend, and period modelings to capture temporal characteristics in different components. The external variable triggered loss is proposed for the imbalanced learning under extreme events. Furthermore, Generalized Additive Model (GAM) is employed in the framework for desirable interpretability. The experiments on both Central China electric load and public energy meters from buildings show that the proposed SaDI framework achieves average 22.14% improvement compared with the current state-of-the-art algorithms in forecasting under extreme events in terms of daily mean of normalized RMSE. Code, Public datasets, and Appendix are available at: https://doi.org/10.24433/CO.9696980.v1 .
Learning Interpretable Decision Rule Sets: A Submodular Optimization Approach
Yang, Fan, He, Kai, Yang, Linxiao, Du, Hongxia, Yang, Jingbang, Yang, Bo, Sun, Liang
Rule sets are highly interpretable logical models in which the predicates for decision are expressed in disjunctive normal form (DNF, OR-of-ANDs), or, equivalently, the overall model comprises an unordered collection of if-then decision rules. In this paper, we consider a submodular optimization based approach for learning rule sets. The learning problem is framed as a subset selection task in which a subset of all possible rules needs to be selected to form an accurate and interpretable rule set. We employ an objective function that exhibits submodularity and thus is amenable to submodular optimization techniques. To overcome the difficulty arose from dealing with the exponential-sized ground set of rules, the subproblem of searching a rule is casted as another subset selection task that asks for a subset of features. We show it is possible to write the induced objective function for the subproblem as a difference of two submodular (DS) functions to make it approximately solvable by DS optimization algorithms. Overall, the proposed approach is simple, scalable, and likely to be benefited from further research on submodular optimization. Experiments on real datasets demonstrate the effectiveness of our method.
NetRCA: An Effective Network Fault Cause Localization Algorithm
Zhang, Chaoli, Zhou, Zhiqiang, Zhang, Yingying, Yang, Linxiao, He, Kai, Wen, Qingsong, Sun, Liang
Localizing the root cause of network faults is crucial to network operation and maintenance. However, due to the complicated network architectures and wireless environments, as well as limited labeled data, accurately localizing the true root cause is challenging. In this paper, we propose a novel algorithm named NetRCA to deal with this problem. Firstly, we extract effective derived features from the original raw data by considering temporal, directional, attribution, and interaction characteristics. Secondly, we adopt multivariate time series similarity and label propagation to generate new training data from both labeled and unlabeled data to overcome the lack of labeled samples. Thirdly, we design an ensemble model which combines XGBoost, rule set learning, attribution model, and graph algorithm, to fully utilize all data information and enhance performance. Finally, experiments and analysis are conducted on the real-world dataset from ICASSP 2022 AIOps Challenge to demonstrate the superiority and effectiveness of our approach.
Low-Rank Phase Retrieval via Variational Bayesian Learning
Liu, Kaihui, Wang, Jiayi, Xing, Zhengli, Yang, Linxiao, Fang, Jun
Abstract--In this paper, we consider the problem of low-rank phase retrieval whose objective is to estimate a complex low-rank matrix from magnitude-only measurements. We propose a hierarchical prior model for low-rank phase retrieval, in which a Gaussian-Wishart hierarchical prior is placed on the underlying low-rank matrix to promote the low-rankness of the matrix. Based on the proposed hierarchical model, a variational expectation-maximization (EM) algorithm is developed. The proposed method is less sensitive to the choice of the initialization point and works well with random initialization. Simulation results are provided to illustrate the effectiveness of the proposed algorithm.
Simultaneous Block-Sparse Signal Recovery Using Pattern-Coupled Sparse Bayesian Learning
Xiao, Hang, Xing, Zhengli, Yang, Linxiao, Fang, Jun, Wu, Yanlun
In this paper, we consider the block-sparse signals recovery problem in the context of multiple measurement vectors (MMV) with common row sparsity patterns. We develop a new method for recovery of common row sparsity MMV signals, where a pattern-coupled hierarchical Gaussian prior model is introduced to characterize both the block-sparsity of the coefficients and the statistical dependency between neighboring coefficients of the common row sparsity MMV signals. Unlike many other methods, the proposed method is able to automatically capture the block sparse structure of the unknown signal. Our method is developed using an expectation-maximization (EM) framework. Simulation results show that our proposed method offers competitive performance in recovering block-sparse common row sparsity pattern MMV signals.
Fast Low-Rank Bayesian Matrix Completion with Hierarchical Gaussian Prior Models
Yang, Linxiao, Fang, Jun, Duan, Huiping, Li, Hongbin, Zeng, Bing
The problem of low rank matrix completion is considered in this paper. To exploit the underlying low-rank structure of the data matrix, we propose a hierarchical Gaussian prior model, where columns of the low-rank matrix are assumed to follow a Gaussian distribution with zero mean and a common precision matrix, and a Wishart distribution is specified as a hyperprior over the precision matrix. We show that such a hierarchical Gaussian prior has the potential to encourage a low-rank solution. Based on the proposed hierarchical prior model, a variational Bayesian method is developed for matrix completion, where the generalized approximate massage passing (GAMP) technique is embedded into the variational Bayesian inference in order to circumvent cumbersome matrix inverse operations. Simulation results show that our proposed method demonstrates superiority over existing state-of-the-art matrix completion methods.