Goto

Collaborating Authors

 Yang, Liang


Understanding Social Support Needs in Questions: A Hybrid Approach Integrating Semi-Supervised Learning and LLM-based Data Augmentation

arXiv.org Artificial Intelligence

Patients are increasingly turning to online health Q&A communities for social support to improve their well-being. However, when this support received does not align with their specific needs, it may prove ineffective or even detrimental. This necessitates a model capable of identifying the social support needs in questions. However, training such a model is challenging due to the scarcity and class imbalance issues of labeled data. To overcome these challenges, we follow the computational design science paradigm to develop a novel framework, Hybrid Approach for SOcial Support need classification (HA-SOS). HA-SOS integrates an answer-enhanced semi-supervised learning approach, a text data augmentation technique leveraging large language models (LLMs) with reliability- and diversity-aware sample selection mechanism, and a unified training process to automatically label social support needs in questions. Extensive empirical evaluations demonstrate that HA-SOS significantly outperforms existing question classification models and alternative semi-supervised learning approaches. This research contributes to the literature on social support, question classification, semi-supervised learning, and text data augmentation. In practice, our HA-SOS framework facilitates online Q&A platform managers and answerers to better understand users' social support needs, enabling them to provide timely, personalized answers and interventions.


DeskVision: Large Scale Desktop Region Captioning for Advanced GUI Agents

arXiv.org Artificial Intelligence

The limitation of graphical user interface (GUI) data has been a significant barrier to the development of GUI agents today, especially for the desktop / computer use scenarios. To address this, we propose an automated GUI data generation pipeline, AutoCaptioner, which generates data with rich descriptions while minimizing human effort. Using AutoCaptioner, we created a novel large-scale desktop GUI dataset, DeskVision, along with the largest desktop test benchmark, DeskVision-Eval, which reflects daily usage and covers diverse systems and UI elements, each with rich descriptions. With DeskVision, we train a new GUI understanding model, GUIExplorer. Results show that GUIExplorer achieves state-of-the-art (SOTA) performance in understanding/grounding visual elements without the need for complex architectural designs. We further validated the effectiveness of the DeskVision dataset through ablation studies on various large visual language models (LVLMs). We believe that AutoCaptioner and DeskVision will significantly advance the development of GUI agents, and will open-source them for the community.


Unveiling the Capabilities of Large Language Models in Detecting Offensive Language with Annotation Disagreement

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have become essential for offensive language detection, yet their ability to handle annotation disagreement remains underexplored. Disagreement samples, which arise from subjective interpretations, pose a unique challenge due to their ambiguous nature. Understanding how LLMs process these cases, particularly their confidence levels, can offer insight into their alignment with human annotators. This study systematically evaluates the performance of multiple LLMs in detecting offensive language at varying levels of annotation agreement. We analyze binary classification accuracy, examine the relationship between model confidence and human disagreement, and explore how disagreement samples influence model decision-making during few-shot learning and instruction fine-tuning. Our findings reveal that LLMs struggle with low-agreement samples, often exhibiting overconfidence in these ambiguous cases. However, utilizing disagreement samples in training improves both detection accuracy and model alignment with human judgment. These insights provide a foundation for enhancing LLM-based offensive language detection in real-world moderation tasks.


STATE ToxiCN: A Benchmark for Span-level Target-Aware Toxicity Extraction in Chinese Hate Speech Detection

arXiv.org Artificial Intelligence

The proliferation of hate speech has caused significant harm to society. The intensity and directionality of hate are closely tied to the target and argument it is associated with. However, research on hate speech detection in Chinese has lagged behind, and existing datasets lack span-level fine-grained annotations. Furthermore, the lack of research on Chinese hateful slang poses a significant challenge. In this paper, we provide a solution for fine-grained detection of Chinese hate speech. First, we construct a dataset containing Target-Argument-Hateful-Group quadruples (STATE ToxiCN), which is the first span-level Chinese hate speech dataset. Secondly, we evaluate the span-level hate speech detection performance of existing models using STATE ToxiCN. Finally, we conduct the first study on Chinese hateful slang and evaluate the ability of LLMs to detect such expressions. Our work contributes valuable resources and insights to advance span-level hate speech detection in Chinese.


Commonality and Individuality! Integrating Humor Commonality with Speaker Individuality for Humor Recognition

arXiv.org Artificial Intelligence

Humor recognition aims to identify whether a specific speaker's text is humorous. Current methods for humor recognition mainly suffer from two limitations: (1) they solely focus on one aspect of humor commonalities, ignoring the multifaceted nature of humor; and (2) they typically overlook the critical role of speaker individuality, which is essential for a comprehensive understanding of humor expressions. To bridge these gaps, we introduce the Commonality and Individuality Incorporated Network for Humor Recognition (CIHR), a novel model designed to enhance humor recognition by integrating multifaceted humor commonalities with the distinctive individuality of speakers. The CIHR features a Humor Commonality Analysis module that explores various perspectives of multifaceted humor commonality within user texts, and a Speaker Individuality Extraction module that captures both static and dynamic aspects of a speaker's profile to accurately model their distinctive individuality. Additionally, Static and Dynamic Fusion modules are introduced to effectively incorporate the humor commonality with speaker's individuality in the humor recognition process. Extensive experiments demonstrate the effectiveness of CIHR, underscoring the importance of concurrently addressing both multifaceted humor commonality and distinctive speaker individuality in humor recognition.


GraphCL: Graph-based Clustering for Semi-Supervised Medical Image Segmentation

arXiv.org Artificial Intelligence

Semi-supervised learning (SSL) has made notable advancements in medical image segmentation (MIS), particularly in scenarios with limited labeled data and significantly enhancing data utilization efficiency. Previous methods primarily focus on complex training strategies to utilize unlabeled data but neglect the importance of graph structural information. Different from existing methods, we propose a graph-based clustering for semi-supervised medical image segmentation (GraphCL) by jointly modeling graph data structure in a unified deep model. The proposed GraphCL model enjoys several advantages. Firstly, to the best of our knowledge, this is the first work to model the data structure information for semi-supervised medical image segmentation (SSMIS). Secondly, to get the clustered features across different graphs, we integrate both pairwise affinities between local image features and raw features as inputs. Extensive experimental results on three standard benchmarks show that the proposed GraphCL algorithm outperforms state-of-the-art semi-supervised medical image segmentation methods.


AGLP: A Graph Learning Perspective for Semi-supervised Domain Adaptation

arXiv.org Artificial Intelligence

In semi-supervised domain adaptation (SSDA), the model aims to leverage partially labeled target domain data along with a large amount of labeled source domain data to enhance its generalization capability for the target domain. A key advantage of SSDA is its ability to significantly reduce reliance on labeled data, thereby lowering the costs and time associated with data preparation. Most existing SSDA methods utilize information from domain labels and class labels but overlook the structural information of the data. To address this issue, this paper proposes a graph learning perspective (AGLP) for semi-supervised domain adaptation. We apply the graph convolutional network to the instance graph which allows structural information to propagate along the weighted graph edges. The proposed AGLP model has several advantages. First, to the best of our knowledge, this is the first work to model structural information in SSDA. Second, the proposed model can effectively learn domain-invariant and semantic representations, reducing domain discrepancies in SSDA. Extensive experimental results on multiple standard benchmarks demonstrate that the proposed AGLP algorithm outperforms state-of-the-art semi-supervised domain adaptation methods.


Towards Comprehensive Detection of Chinese Harmful Memes

arXiv.org Artificial Intelligence

This paper has been accepted in the NeurIPS 2024 D & B Track. Harmful memes have proliferated on the Chinese Internet, while research on detecting Chinese harmful memes significantly lags behind due to the absence of reliable datasets and effective detectors. To this end, we focus on the comprehensive detection of Chinese harmful memes. We construct ToxiCN MM, the first Chinese harmful meme dataset, which consists of 12,000 samples with fine-grained annotations for various meme types. Additionally, we propose a baseline detector, Multimodal Knowledge Enhancement (MKE), incorporating contextual information of meme content generated by the LLM to enhance the understanding of Chinese memes. During the evaluation phase, we conduct extensive quantitative experiments and qualitative analyses on multiple baselines, including LLMs and our MKE. The experimental results indicate that detecting Chinese harmful memes is challenging for existing models while demonstrating the effectiveness of MKE. The resources for this paper are available at https://github.com/DUT-lujunyu/ToxiCN_MM.


PclGPT: A Large Language Model for Patronizing and Condescending Language Detection

arXiv.org Artificial Intelligence

Disclaimer: Samples in this paper may be harmful and cause discomfort! Patronizing and condescending language (PCL) is a form of speech directed at vulnerable groups. As an essential branch of toxic language, this type of language exacerbates conflicts and confrontations among Internet communities and detrimentally impacts disadvantaged groups. Traditional pre-trained language models (PLMs) perform poorly in detecting PCL due to its implicit toxicity traits like hypocrisy and false sympathy. With the rise of large language models (LLMs), we can harness their rich emotional semantics to establish a paradigm for exploring implicit toxicity. In this paper, we introduce PclGPT, a comprehensive LLM benchmark designed specifically for PCL. We collect, annotate, and integrate the Pcl-PT/SFT dataset, and then develop a bilingual PclGPT-EN/CN model group through a comprehensive pre-training and supervised fine-tuning staircase process to facilitate implicit toxic detection. Group detection results and fine-grained detection from PclGPT and other models reveal significant variations in the degree of bias in PCL towards different vulnerable groups, necessitating increased societal attention to protect them.


IPEval: A Bilingual Intellectual Property Agency Consultation Evaluation Benchmark for Large Language Models

arXiv.org Artificial Intelligence

The rapid development of Large Language Models (LLMs) in vertical domains, including intellectual property (IP), lacks a specific evaluation benchmark for assessing their understanding, application, and reasoning abilities. To fill this gap, we introduce IPEval, the first evaluation benchmark tailored for IP agency and consulting tasks. IPEval comprises 2657 multiple-choice questions across four major dimensions: creation, application, protection, and management of IP. These questions span patent rights (inventions, utility models, designs), trademarks, copyrights, trade secrets, and other related laws. Evaluation methods include zero-shot, 5-few-shot, and Chain of Thought (CoT) for seven LLM types, predominantly in English or Chinese. Results show superior English performance by models like GPT series and Qwen series, while Chinese-centric LLMs excel in Chinese tests, albeit specialized IP LLMs lag behind general-purpose ones. Regional and temporal aspects of IP underscore the need for LLMs to grasp legal nuances and evolving laws. IPEval aims to accurately gauge LLM capabilities in IP and spur development of specialized models. Website: \url{https://ipeval.github.io/}