Goto

Collaborating Authors

 Yang, Junhuan


A Novel Diffusion Model for Pairwise Geoscience Data Generation with Unbalanced Training Dataset

arXiv.org Artificial Intelligence

Recently, the advent of generative AI technologies has made transformational impacts on our daily lives, yet its application in scientific applications remains in its early stages. Data scarcity is a major, well-known barrier in data-driven scientific computing, so physics-guided generative AI holds significant promise. In scientific computing, most tasks study the conversion of multiple data modalities to describe physical phenomena, for example, spatial and waveform in seismic imaging, time and frequency in signal processing, and temporal and spectral in climate modeling; as such, multi-modal pairwise data generation is highly required instead of single-modal data generation, which is usually used in natural images (e.g., faces, scenery). Moreover, in real-world applications, the unbalance of available data in terms of modalities commonly exists; for example, the spatial data (i.e., velocity maps) in seismic imaging can be easily simulated, but real-world seismic waveform is largely lacking. While the most recent efforts enable the powerful diffusion model to generate multi-modal data, how to leverage the unbalanced available data is still unclear. In this work, we use seismic imaging in subsurface geophysics as a vehicle to present ``UB-Diff'', a novel diffusion model for multi-modal paired scientific data generation. One major innovation is a one-in-two-out encoder-decoder network structure, which can ensure pairwise data is obtained from a co-latent representation. Then, the co-latent representation will be used by the diffusion process for pairwise data generation. Experimental results on the OpenFWI dataset show that UB-Diff significantly outperforms existing techniques in terms of Fr\'{e}chet Inception Distance (FID) score and pairwise evaluation, indicating the generation of reliable and useful multi-modal pairwise data.


A Physics-guided Generative AI Toolkit for Geophysical Monitoring

arXiv.org Artificial Intelligence

Full-waveform inversion (FWI) plays a vital role in geoscience to explore the subsurface. It utilizes the seismic wave to image the subsurface velocity map. As the machine learning (ML) technique evolves, the data-driven approaches using ML for FWI tasks have emerged, offering enhanced accuracy and reduced computational cost compared to traditional physics-based methods. However, a common challenge in geoscience, the unprivileged data, severely limits ML effectiveness. The issue becomes even worse during model pruning, a step essential in geoscience due to environmental complexities. To tackle this, we introduce the EdGeo toolkit, which employs a diffusion-based model guided by physics principles to generate high-fidelity velocity maps. The toolkit uses the acoustic wave equation to generate corresponding seismic waveform data, facilitating the fine-tuning of pruned ML models. Our results demonstrate significant improvements in SSIM scores and reduction in both MAE and MSE across various pruning ratios. Notably, the ML model fine-tuned using data generated by EdGeo yields superior quality of velocity maps, especially in representing unprivileged features, outperforming other existing methods.


Muffin: A Framework Toward Multi-Dimension AI Fairness by Uniting Off-the-Shelf Models

arXiv.org Artificial Intelligence

Model fairness (a.k.a., bias) has become one of the most critical problems in a wide range of AI applications. An unfair model in autonomous driving may cause a traffic accident if corner cases (e.g., extreme weather) cannot be fairly regarded; or it will incur healthcare disparities if the AI model misdiagnoses a certain group of people (e.g., brown and black skin). In recent years, there have been emerging research works on addressing unfairness, and they mainly focus on a single unfair attribute, like skin tone; however, real-world data commonly have multiple attributes, among which unfairness can exist in more than one attribute, called 'multi-dimensional fairness'. In this paper, we first reveal a strong correlation between the different unfair attributes, i.e., optimizing fairness on one attribute will lead to the collapse of others. Then, we propose a novel Multi-Dimension Fairness framework, namely Muffin, which includes an automatic tool to unite off-the-shelf models to improve the fairness on multiple attributes simultaneously. Case studies on dermatology datasets with two unfair attributes show that the existing approach can achieve 21.05% fairness improvement on the first attribute while it makes the second attribute unfair by 1.85%. On the other hand, the proposed Muffin can unite multiple models to achieve simultaneously 26.32% and 20.37% fairness improvement on both attributes; meanwhile, it obtains 5.58% accuracy gain.


On-Device Unsupervised Image Segmentation

arXiv.org Artificial Intelligence

Along with the breakthrough of convolutional neural networks, learning-based segmentation has emerged in many research works. Most of them are based on supervised learning, requiring plenty of annotated data; however, to support segmentation, a label for each pixel is required, which is obviously expensive. As a result, the issue of lacking annotated segmentation data commonly exists. Continuous learning is a promising way to deal with this issue; however, it still has high demands on human labor for annotation. What's more, privacy is highly required in segmentation data for real-world applications, which further calls for on-device learning. In this paper, we aim to resolve the above issue in an alternative way: Instead of supervised segmentation, we propose to develop efficient unsupervised segmentation that can be executed on edge devices. Based on our observation that segmentation can obtain high performance when pixels are mapped to a high-dimension space, we for the first time bring brain-inspired hyperdimensional computing (HDC) to the segmentation task. We build the HDC-based unsupervised segmentation framework, namely "SegHDC". In SegHDC, we devise a novel encoding approach that follows the Manhattan distance. A clustering algorithm is further developed on top of the encoded high-dimension vectors to obtain segmentation results. Experimental results show SegHDC can significantly surpass neural network-based unsupervised segmentation. On a standard segmentation dataset, DSB2018, SegHDC can achieve a 28.0% improvement in Intersection over Union (IoU) score; meanwhile, it achieves over 300x speedup on Raspberry PI. What's more, for a larger size image in the BBBC005 dataset, the existing approach cannot be accommodated to Raspberry PI due to out of memory; on the other hand, SegHDC can obtain segmentation results within 3 minutes while achieving a 0.9587 IoU score.