Goto

Collaborating Authors

 Yang, Jing-Yu


Multiset Feature Learning for Highly Imbalanced Data Classification

AAAI Conferences

With the expansion of data, increasing imbalanced data has emerged. When the imbalance ratio of data is high, most existing imbalanced learning methods decline in classification performance. To address this problem, a few highly imbalanced learning methods have been presented. However, most of them are still sensitive to the high imbalance ratio. This work aims to provide an effective solution for the highly imbalanced data classification problem. We conduct highly imbalanced learning from the perspective of feature learning. We partition the majority class into multiple blocks with each being balanced to the minority class and combine each block with the minority class to construct a balanced sample set. Multiset feature learning (MFL) is performed on these sets to learn discriminant features. We thus propose an uncorrelated cost-sensitive multiset learning (UCML) approach. UCML provides a multiple sets construction strategy, incorporates the cost-sensitive factor into MFL, and designs a weighted uncorrelated constraint to remove the correlation among multiset features. Experiments on five highly imbalanced datasets indicate that: UCML outperforms state-of-the-art imbalanced learning methods.


Intra-View and Inter-View Supervised Correlation Analysis for Multi-View Feature Learning

AAAI Conferences

Multi-view feature learning is an attractive research topic with great practical success. Canonical correlation analysis (CCA) has become an important technique in multi-view learning, since it can fully utilize the inter-view correlation. In this paper, we mainly study the CCA based multi-view supervised feature learning technique where the labels of training samples are known. Several supervised CCA based multi-view methods have been presented, which focus on investigating the supervised correlation across different views. However, they take no account of the intra-view correlation between samples. Researchers have also introduced the discriminant analysis technique into multi-view feature learning, such as multi-view discriminant analysis (MvDA). But they ignore the canonical correlation within each view and between all views. In this paper, we propose a novel multi-view feature learning approach based on intra-view and inter-view supervised correlation analysis (I2SCA), which can explore the useful correlation information of samples within each view and between all views. The objective function of I2SCA is designed to simultaneously extract the discriminatingly correlated features from both inter-view and intra-view. It can obtain an analytical solution without iterative calculation. And we provide a kernelized extension of I2SCA to tackle the linearly inseparable problem in the original feature space. Four widely-used datasets are employed as test data. Experimental results demonstrate that our proposed approaches outperform several representative multi-view supervised feature learning methods.