Yang, Jing
Offline Reinforcement Learning for Wireless Network Optimization with Mixture Datasets
Yang, Kun, Shen, Cong, Yang, Jing, Yeh, Shu-ping, Sydir, Jerry
The recent development of reinforcement learning (RL) has boosted the adoption of online RL for wireless radio resource management (RRM). However, online RL algorithms require direct interactions with the environment, which may be undesirable given the potential performance loss due to the unavoidable exploration in RL. In this work, we first investigate the use of \emph{offline} RL algorithms in solving the RRM problem. We evaluate several state-of-the-art offline RL algorithms, including behavior constrained Q-learning (BCQ), conservative Q-learning (CQL), and implicit Q-learning (IQL), for a specific RRM problem that aims at maximizing a linear combination {of sum and} 5-percentile rates via user scheduling. We observe that the performance of offline RL for the RRM problem depends critically on the behavior policy used for data collection, and further propose a novel offline RL solution that leverages heterogeneous datasets collected by different behavior policies. We show that with a proper mixture of the datasets, offline RL can produce a near-optimal RL policy even when all involved behavior policies are highly suboptimal.
Tolerating Annotation Displacement in Dense Object Counting via Point Annotation Probability Map
Chen, Yuehai, Yang, Jing, Chen, Badong, Gang, Hua, Du, Shaoyi
Counting objects in crowded scenes remains a challenge to computer vision. The current deep learning based approach often formulate it as a Gaussian density regression problem. Such a brute-force regression, though effective, may not consider the annotation displacement properly which arises from the human annotation process and may lead to different distributions. We conjecture that it would be beneficial to consider the annotation displacement in the dense object counting task. To obtain strong robustness against annotation displacement, generalized Gaussian distribution (GGD) function with a tunable bandwidth and shape parameter is exploited to form the learning target point annotation probability map, PAPM. Specifically, we first present a hand-designed PAPM method (HD-PAPM), in which we design a function based on GGD to tolerate the annotation displacement. For end-to-end training, the hand-designed PAPM may not be optimal for the particular network and dataset. An adaptively learned PAPM method (AL-PAPM) is proposed. To improve the robustness to annotation displacement, we design an effective transport cost function based on GGD. The proposed PAPM is capable of integration with other methods. We also combine PAPM with P2PNet through modifying the matching cost matrix, forming P2P-PAPM. This could also improve the robustness to annotation displacement of P2PNet. Extensive experiments show the superiority of our proposed methods.
Provable Benefits of Multi-task RL under Non-Markovian Decision Making Processes
Huang, Ruiquan, Cheng, Yuan, Yang, Jing, Tan, Vincent, Liang, Yingbin
In multi-task reinforcement learning (RL) under Markov decision processes (MDPs), the presence of shared latent structures among multiple MDPs has been shown to yield significant benefits to the sample efficiency compared to single-task RL. In this paper, we investigate whether such a benefit can extend to more general sequential decision making problems, such as partially observable MDPs (POMDPs) and more general predictive state representations (PSRs). The main challenge here is that the large and complex model space makes it hard to identify what types of common latent structure of multi-task PSRs can reduce the model complexity and improve sample efficiency. To this end, we posit a joint model class for tasks and use the notion of $\eta$-bracketing number to quantify its complexity; this number also serves as a general metric to capture the similarity of tasks and thus determines the benefit of multi-task over single-task RL. We first study upstream multi-task learning over PSRs, in which all tasks share the same observation and action spaces. We propose a provably efficient algorithm UMT-PSR for finding near-optimal policies for all PSRs, and demonstrate that the advantage of multi-task learning manifests if the joint model class of PSRs has a smaller $\eta$-bracketing number compared to that of individual single-task learning. We also provide several example multi-task PSRs with small $\eta$-bracketing numbers, which reap the benefits of multi-task learning. We further investigate downstream learning, in which the agent needs to learn a new target task that shares some commonalities with the upstream tasks via a similarity constraint. By exploiting the learned PSRs from the upstream, we develop a sample-efficient algorithm that provably finds a near-optimal policy.
A 3M-Hybrid Model for the Restoration of Unique Giant Murals: A Case Study on the Murals of Yongle Palace
Yang, Jing, Ruhaiyem, Nur Intan Raihana, Zhou, Chichun
The Yongle Palace murals, as valuable cultural heritage, have suffered varying degrees of damage, making their restoration of significant importance. However, the giant size and unique data of Yongle Palace murals present challenges for existing deep-learning based restoration methods: 1) The distinctive style introduces domain bias in traditional transfer learning-based restoration methods, while the scarcity of mural data further limits the applicability of these methods. 2) Additionally, the giant size of these murals results in a wider range of defect types and sizes, necessitating models with greater adaptability. Consequently, there is a lack of focus on deep learning-based restoration methods for the unique giant murals of Yongle Palace. Here, a 3M-Hybrid model is proposed to address these challenges. Firstly, based on the characteristic that the mural data frequency is prominent in the distribution of low and high frequency features, high and low frequency features are separately abstracted for complementary learning. Furthermore, we integrate a pre-trained Vision Transformer model (VIT) into the CNN module, allowing us to leverage the benefits of a large model while mitigating domain bias. Secondly, we mitigate seam and structural distortion issues resulting from the restoration of large defects by employing a multi-scale and multi-perspective strategy, including data segmentation and fusion. Experimental results demonstrate the efficacy of our proposed model. In regular-sized mural restoration, it improves SSIM and PSNR by 14.61% and 4.73%, respectively, compared to the best model among four representative CNN models. Additionally, it achieves favorable results in the final restoration of giant murals.
Model-Free Algorithm with Improved Sample Efficiency for Zero-Sum Markov Games
Feng, Songtao, Yin, Ming, Wang, Yu-Xiang, Yang, Jing, Liang, Yingbin
The problem of two-player zero-sum Markov games has recently attracted increasing interests in theoretical studies of multi-agent reinforcement learning (RL). In particular, for finite-horizon episodic Markov decision processes (MDPs), it has been shown that model-based algorithms can find an $\epsilon$-optimal Nash Equilibrium (NE) with the sample complexity of $O(H^3SAB/\epsilon^2)$, which is optimal in the dependence of the horizon $H$ and the number of states $S$ (where $A$ and $B$ denote the number of actions of the two players, respectively). However, none of the existing model-free algorithms can achieve such an optimality. In this work, we propose a model-free stage-based Q-learning algorithm and show that it achieves the same sample complexity as the best model-based algorithm, and hence for the first time demonstrate that model-free algorithms can enjoy the same optimality in the $H$ dependence as model-based algorithms. The main improvement of the dependency on $H$ arises by leveraging the popular variance reduction technique based on the reference-advantage decomposition previously used only for single-agent RL. However, such a technique relies on a critical monotonicity property of the value function, which does not hold in Markov games due to the update of the policy via the coarse correlated equilibrium (CCE) oracle. Thus, to extend such a technique to Markov games, our algorithm features a key novel design of updating the reference value functions as the pair of optimistic and pessimistic value functions whose value difference is the smallest in the history in order to achieve the desired improvement in the sample efficiency.
Provably Efficient Algorithm for Nonstationary Low-Rank MDPs
Cheng, Yuan, Yang, Jing, Liang, Yingbin
Reinforcement learning (RL) under changing environment models many real-world applications via nonstationary Markov Decision Processes (MDPs), and hence gains considerable interest. However, theoretical studies on nonstationary MDPs in the literature have mainly focused on tabular and linear (mixture) MDPs, which do not capture the nature of unknown representation in deep RL. In this paper, we make the first effort to investigate nonstationary RL under episodic low-rank MDPs, where both transition kernels and rewards may vary over time, and the low-rank model contains unknown representation in addition to the linear state embedding function. We first propose a parameter-dependent policy optimization algorithm called PORTAL, and further improve PORTAL to its parameter-free version of Ada-PORTAL, which is able to tune its hyper-parameters adaptively without any prior knowledge of nonstationarity. For both algorithms, we provide upper bounds on the average dynamic suboptimality gap, which show that as long as the nonstationarity is not significantly large, PORTAL and Ada-PORTAL are sample-efficient and can achieve arbitrarily small average dynamic suboptimality gap with polynomial sample complexity.
Provably Efficient UCB-type Algorithms For Learning Predictive State Representations
Huang, Ruiquan, Liang, Yingbin, Yang, Jing
The general sequential decision-making problem, which includes Markov decision processes (MDPs) and partially observable MDPs (POMDPs) as special cases, aims at maximizing a cumulative reward by making a sequence of decisions based on a history of observations and actions over time. Recent studies have shown that the sequential decision-making problem is statistically learnable if it admits a low-rank structure modeled by predictive state representations (PSRs). Despite these advancements, existing approaches typically involve oracles or steps that are not computationally efficient. On the other hand, the upper confidence bound (UCB) based approaches, which have served successfully as computationally efficient methods in bandits and MDPs, have not been investigated for more general PSRs, due to the difficulty of optimistic bonus design in these more challenging settings. This paper proposes the first known UCB-type approach for PSRs, featuring a novel bonus term that upper bounds the total variation distance between the estimated and true models. We further characterize the sample complexity bounds for our designed UCB-type algorithms for both online and offline PSRs. In contrast to existing approaches for PSRs, our UCB-type algorithms enjoy computational efficiency, last-iterate guaranteed near-optimal policy, and guaranteed model accuracy.
Provably Efficient Offline Reinforcement Learning with Perturbed Data Sources
Shi, Chengshuai, Xiong, Wei, Shen, Cong, Yang, Jing
Existing theoretical studies on offline reinforcement learning (RL) mostly consider a dataset sampled directly from the target task. In practice, however, data often come from several heterogeneous but related sources. Motivated by this gap, this work aims at rigorously understanding offline RL with multiple datasets that are collected from randomly perturbed versions of the target task instead of from itself. An information-theoretic lower bound is derived, which reveals a necessary requirement on the number of involved sources in addition to that on the number of data samples. Then, a novel HetPEVI algorithm is proposed, which simultaneously considers the sample uncertainties from a finite number of data samples per data source and the source uncertainties due to a finite number of available data sources. Theoretical analyses demonstrate that HetPEVI can solve the target task as long as the data sources collectively provide a good data coverage. Moreover, HetPEVI is demonstrated to be optimal up to a polynomial factor of the horizon length. Finally, the study is extended to offline Markov games and offline robust RL, which demonstrates the generality of the proposed designs and theoretical analyses.
Federated Linear Contextual Bandits with User-level Differential Privacy
Huang, Ruiquan, Zhang, Huanyu, Melis, Luca, Shen, Milan, Hajzinia, Meisam, Yang, Jing
This paper studies federated linear contextual bandits under the notion of user-level differential privacy (DP). We first introduce a unified federated bandits framework that can accommodate various definitions of DP in the sequential decision-making setting. We then formally introduce user-level central DP (CDP) and local DP (LDP) in the federated bandits framework, and investigate the fundamental trade-offs between the learning regrets and the corresponding DP guarantees in a federated linear contextual bandits model. For CDP, we propose a federated algorithm termed as $\texttt{ROBIN}$ and show that it is near-optimal in terms of the number of clients $M$ and the privacy budget $\varepsilon$ by deriving nearly-matching upper and lower regret bounds when user-level DP is satisfied. For LDP, we obtain several lower bounds, indicating that learning under user-level $(\varepsilon,\delta)$-LDP must suffer a regret blow-up factor at least $\min\{1/\varepsilon,M\}$ or $\min\{1/\sqrt{\varepsilon},\sqrt{M}\}$ under different conditions.
The Age of Synthetic Realities: Challenges and Opportunities
Cardenuto, João Phillipe, Yang, Jing, Padilha, Rafael, Wan, Renjie, Moreira, Daniel, Li, Haoliang, Wang, Shiqi, Andaló, Fernanda, Marcel, Sébastien, Rocha, Anderson
Synthetic realities are digital creations or augmentations that are contextually generated through the use of Artificial Intelligence (AI) methods, leveraging extensive amounts of data to construct new narratives or realities, regardless of the intent to deceive. In this paper, we delve into the concept of synthetic realities and their implications for Digital Forensics and society at large within the rapidly advancing field of AI. We highlight the crucial need for the development of forensic techniques capable of identifying harmful synthetic creations and distinguishing them from reality. This is especially important in scenarios involving the creation and dissemination of fake news, disinformation, and misinformation. Our focus extends to various forms of media, such as images, videos, audio, and text, as we examine how synthetic realities are crafted and explore approaches to detecting these malicious creations. Additionally, we shed light on the key research challenges that lie ahead in this area. This study is of paramount importance due to the rapid progress of AI generative techniques and their impact on the fundamental principles of Forensic Science.